IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

A Texture Preserving Image Interpolation Algorithm Based on Rational Function

A Texture Preserving Image Interpolation Algorithm Based on Rational Function
View Sample PDF
Author(s): Hongwei Du (Shandong University of Finance and Economics, Jinan, CN), Yunfeng Zhang (Shandong University of Finance and Economics, Jinan, CN), Fangxun Bao (Shandong University, Jinan, CN), Ping Wang (Shandong University of Finance and Economics, Jinan, CN)and Caiming Zhang (Shandong University, Jinan, CN)
Copyright: 2018
Volume: 9
Issue: 2
Pages: 21
Source title: International Journal of Multimedia Data Engineering and Management (IJMDEM)
Editor(s)-in-Chief: Chengcui Zhang (University of Alabama at Birmingham, USA)and Shu-Ching Chen (University of Missouri-Kansas City, United States)
DOI: 10.4018/IJMDEM.2018040103

Purchase

View A Texture Preserving Image Interpolation Algorithm Based on Rational Function on the publisher's website for pricing and purchasing information.

Abstract

In this article, a type of bivariate rational interpolation function is constructed for preserving image texture structure, which integrates polynomial functions with a rational function. On the basis of this model, an image interpolation algorithm for texture preserving is proposed. First, an isoline method is employed to detect the image texture, and then the image can be divided into texture regions and smooth regions adaptively. Second, the smooth region and the textured region are interpolated by the polynomial model and the rational model, respectively. Finally, in order to preserve image texture direction, an objective function based on the gradient is constructed, and the weight of the correlation point is calculated, and the pixel value of the interpolation point is determined by convolution. Experimental results show that the proposed algorithm achieves good competitive performance compared with the state-of-the-art interpolation algorithms, especially in preserving image details and edge structure.

Related Content

Yasasi Abeysinghe, Bhanuka Mahanama, Gavindya Jayawardena, Yasith Jayawardana, Mohan Sunkara, Andrew T. Duchowski, Vikas Ashok, Sampath Jayarathna. © 2024. 20 pages.
Chengxuan Huang, Evan Brock, Dalei Wu, Yu Liang. © 2023. 23 pages.
Duleep Rathgamage Don, Jonathan Boardman, Sudhashree Sayenju, Ramazan Aygun, Yifan Zhang, Bill Franks, Sereres Johnston, George Lee, Dan Sullivan, Girish Modgil. © 2023. 17 pages.
Wei-An Teng, Su-Ling Yeh, Homer H. Chen. © 2023. 17 pages.
Hemanth Gudaparthi, Prudhviraj Naidu, Nan Niu. © 2022. 20 pages.
Anchen Sun, Yudong Tao, Mei-Ling Shyu, Angela Blizzard, William Andrew Rothenberg, Dainelys Garcia, Jason F. Jent. © 2022. 19 pages.
Suvojit Acharjee, Sheli Sinha Chaudhuri. © 2022. 16 pages.
Body Bottom