IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

The Role of Crop Systems Simulation in Agriculture and Environment

The Role of Crop Systems Simulation in Agriculture and Environment
View Sample PDF
Author(s): K.J. Boote (University of Florida, USA), J.W. Jones (University of Florida, USA), G. Hoogenboom (University of Georgia, USA)and J.W. White (USDA-ARS, Arizona, USA)
Copyright: 2010
Volume: 1
Issue: 1
Pages: 14
Source title: International Journal of Agricultural and Environmental Information Systems (IJAEIS)
Editor(s)-in-Chief: Frederic Andres (National Institute of Informatics, Japan), Chutiporn Anutariya (Asian Institute of Technology, Thailand), Teeradaj Racharak (Japan Advanced Institute of Science and Technology, Japan)and Watanee Jearanaiwongkul (National institute of Informatics, Japan)
DOI: 10.4018/jaeis.2010101303

Purchase

View The Role of Crop Systems Simulation in Agriculture and Environment on the publisher's website for pricing and purchasing information.

Abstract

Simulation of crop systems has evolved from a neophyte science into a robust and increasingly accepted discipline. Our vision is that crop systems simulation can serve important roles in agriculture and environment. Important roles and uses of crop systems simulation are in five primary areas: 1) basic research synthesis and integration, where simulation is used to synthesize our understanding of physiology, genetics, soil characteristics, management, and weather effects, 2) strategic tools for planning and policy to evaluate strategies and consequences of genetic improvement or resource management, 3) applications for management purposes, where crop systems simulations are used to evaluate impacts of weather and management on production, water use, nutrient use, nutrient leaching, and economics, 4) real time decision support to assist in management decisions (irrigation, fertilization, sowing date, harvest, yield forecast, pest management), and 5) education in class rooms and farms, to explain how crop systems function and are managed.

Related Content

Vincent Soulignac, François Pinet, Mathilde Bodelet, Hélène Gross. © 2023. 28 pages.
Haiying Liu, Yongcai Lai, Zhenhua Xu, Zhonliang Yang, Yanmin Yu, Ping Yan. © 2023. 12 pages.
Ren Wang. © 2023. 14 pages.
Daidyi Wang, Fengsong Zhang. © 2022. 15 pages.
Takahiro Kawamura, Tetsuo Katsuragi, Akio Kobayashi, Motoko Inatomi, Masataka Oshiro, Hisashi Eguchi. © 2022. 19 pages.
Cédric Baudrit, Patrice Buche, Nadine Leconte, Christophe Fernandez, Maëllis Belna, Geneviève Gésan-Guiziou. © 2022. 22 pages.
Jingfa Wang, Huishi Du. © 2022. 11 pages.
Body Bottom