IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

A Theoretical Framework for Parallel Implementation of Deep Higher Order Neural Networks

A Theoretical Framework for Parallel Implementation of Deep Higher Order Neural Networks
View Sample PDF
Author(s): Shuxiang Xu (University of Tasmania, Australia)and Yunling Liu (China Agricultural University, China)
Copyright: 2017
Pages: 11
Source title: Nature-Inspired Computing: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-5225-0788-8.ch001

Purchase

View A Theoretical Framework for Parallel Implementation of Deep Higher Order Neural Networks on the publisher's website for pricing and purchasing information.

Abstract

This chapter proposes a theoretical framework for parallel implementation of Deep Higher Order Neural Networks (HONNs). First, we develop a new partitioning approach for mapping HONNs to individual computers within a master-slave distributed system (a local area network). This will allow us to use a network of computers (rather than a single computer) to train a HONN to drastically increase its learning speed: all of the computers will be running the HONN simultaneously (parallel implementation). Next, we develop a new learning algorithm so that it can be used for HONN learning in a distributed system environment. Finally, we propose to improve the generalisation ability of the new learning algorithm as used in a distributed system environment. Theoretical analysis of the proposal is thoroughly conducted to verify the soundness of the new approach. Experiments will be performed to test the new algorithm in the future.

Related Content

P. Chitra, A. Saleem Raja, V. Sivakumar. © 2024. 24 pages.
K. Ezhilarasan, K. Somasundaram, T. Kalaiselvi, Praveenkumar Somasundaram, S. Karthigai Selvi, A. Jeevarekha. © 2024. 36 pages.
Kande Archana, V. Kamakshi Prasad, M. Ashok. © 2024. 17 pages.
Ritesh Kumar Jain, Kamal Kant Hiran. © 2024. 23 pages.
U. Vignesh, R. Elakya. © 2024. 13 pages.
S. Karthigai Selvi, R. Siva Shankar, K. Ezhilarasan. © 2024. 16 pages.
Vemasani Varshini, Maheswari Raja, Sharath Kumar Jagannathan. © 2024. 20 pages.
Body Bottom