IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Computational Intelligence to Speed-Up Multi-Objective Design Space Exploration of Embedded Systems

Computational Intelligence to Speed-Up Multi-Objective Design Space Exploration of Embedded Systems
View Sample PDF
Author(s): Giuseppe Ascia (Università degli Studi di Catania, Italy), Vincenzo Catania (Università degli Studi di Catania, Italy), Alessandro G. Di Nuovo (Università degli Studi di Catania, Italy), Maurizio Palesi (Università degli Studi di Catania, Italy) and Davide Patti (Università degli Studi di Catania, Italy)
Copyright: 2008
Pages: 35
Source title: Multi-Objective Optimization in Computational Intelligence: Theory and Practice
Source Author(s)/Editor(s): Lam Thu Bui (University of New South Wales, Australia) and Sameer Alam (University of New South Wales, Australia)
DOI: 10.4018/978-1-59904-498-9.ch010

Purchase

View Computational Intelligence to Speed-Up Multi-Objective Design Space Exploration of Embedded Systems on the publisher's website for pricing and purchasing information.

Abstract

Multi-Objective Evolutionary Algorithms (MOEAs) have received increasing interest in industry, because they have proved to be powerful optimizers. Despite the great success achieved, MOEAs have also encountered many challenges in real-world applications. One of the main difficulties in applying MOEAs is the large number of fitness evaluations (objective calculations) that are often needed before a well acceptable solution can be found. In fact, there are several industrial situations in which both fitness evaluations are computationally expensive and, meanwhile, time available is very low. In this applications efficient strategies to approximate the fitness function have to be adopted, looking for a trade-off between optimization performances and efficiency. This is the case of a complex embedded system design, where it is needed to define an optimal architecture in relation to certain performance indexes respecting strict time-to-market constraints. This activity, known as Design Space Exploration DSE), is still a great challenge for the EDA (Electronic Design Automation) community. One of the most important bottleneck in the overall design flow of a embedded system is due to the simulation. Simulation occurs at every phase of the design flow and it is used to evaluate a system candidate to be implemented. In this chapter we focus on system level design proposing a hybrid computational intelligence approach based on fuzzy approximation to speed up the evaluation of a candidate system. The methodology is applied to a real case study: optimization of the performance and power consumption of an embedded architecture based on a Very Long Instruction Word (VLIW) microprocessor in a mobile multimedia application domain. The results, carried out on a multimedia benchmark suite, are compared, in terms of both performance and efficiency, with other MOGAs strategies to demonstrate the scalability and the accuracy of the proposed approach.

Related Content

Artificial Neural Network What-If Theory
Paolo Massimo Buscema, William J. Tastle. © 2020. 29 pages.
View Details View Details PDF Full Text View Sample PDF
A Brief Review on Deep Learning and Types of Implementation for Deep Learning
Uthra Kunathur Thikshaja, Anand Paul. © 2020. 11 pages.
View Details View Details PDF Full Text View Sample PDF
Introduction to Machine Learning
Arvind Kumar Tiwari. © 2020. 11 pages.
View Details View Details PDF Full Text View Sample PDF
A Comparative Analysis of a Novel Anomaly Detection Algorithm with Neural Networks
Srijan Das, Arpita Dutta, Saurav Sharma, Sangharatna Godboley. © 2020. 17 pages.
View Details View Details PDF Full Text View Sample PDF
Complex-Valued Neural Networks: A New Learning Strategy Using Particle Swarm Optimization
Mohammed E. El-Telbany, Samah Refat, Engy I. Nasr. © 2020. 13 pages.
View Details View Details PDF Full Text View Sample PDF
Ant Colony Optimization Applied to the Training of a High Order Neural Network with Adaptable Exponential Weights
Ashraf M. Abdelbar, Islam Elnabarawy, Donald C. Wunsch II, Khalid M. Salama. © 2020. 14 pages.
View Details View Details PDF Full Text View Sample PDF
A Comparative Study of Neural Network and Fuzzy Logic Control Based Active Shunt Power Filter for 400 Hz Aircraft Electric Power System
Saifullah Khalid. © 2020. 12 pages.
View Details View Details PDF Full Text View Sample PDF
Body Bottom