IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Distributed Robots Path/Tasks Planning on Fetch Scheduling

Distributed Robots Path/Tasks Planning on Fetch Scheduling
View Sample PDF
Author(s): Nilda G. Villanueva-Chacón (Universidad Autónoma de Ciudad Juárez, Mexico)and Edgar A. Martínez-García (Universidad Autónoma de Ciudad Juárez, Mexico)
Copyright: 2015
Pages: 33
Source title: Handbook of Research on Advancements in Robotics and Mechatronics
Source Author(s)/Editor(s): Maki K. Habib (The American University in Cairo, Egypt)
DOI: 10.4018/978-1-4666-7387-8.ch026

Purchase

View Distributed Robots Path/Tasks Planning on Fetch Scheduling on the publisher's website for pricing and purchasing information.

Abstract

A highly concurrent task-planner for distributed multi-robot systems in dynamical industrial feed-lines is presented in this chapter. The system deals with two main issues: a) a path-planning model and b) a robotic-tasks scheduler. A set of kinematic control laws based on directional derivatives model the dynamical robots interaction. Distributed wheeled mobile robots perform the execution of autonomous tasks concurrently and synchronized just in time. A planner model for distributed tasks to autonomously reconfigure and synchronize online change priority missions by the robotic primitives—sense, plan, and act—are proposed. The robotic tasks concern carry-and-fetch to different goals, and dispatching materials. Numerical simulation of mathematical formulation and real experiments illustrate the parallel computing capability and the distributed robot's behavior. Results depict robots dealing with highly concurrent tasks and dynamical events through a parallel scheme.

Related Content

Rashmi Rani Samantaray, Zahira Tabassum, Abdul Azeez. © 2024. 32 pages.
Sanjana Prasad, Deepashree Rajendra Prasad. © 2024. 25 pages.
Deepak Varadam, Sahana P. Shankar, Aryan Bharadwaj, Tanvi Saxena, Sarthak Agrawal, Shraddha Dayananda. © 2024. 24 pages.
Tarun Kumar Vashishth, Vikas Sharma, Kewal Krishan Sharma, Bhupendra Kumar, Sachin Chaudhary, Rajneesh Panwar. © 2024. 29 pages.
Mrutyunjaya S. Hiremath, Rajashekhar C. Biradar. © 2024. 30 pages.
C. L. Chayalakshmi, Mahabaleshwar S. Kakkasageri, Rajani S. Pujar, Nayana Hegde. © 2024. 30 pages.
Amit Kumar Tyagi. © 2024. 29 pages.
Body Bottom