IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Real-Time Digital Signal Processing-Based Algorithm for Universal Software Radio Peripheral to Detect GPS Signal

Real-Time Digital Signal Processing-Based Algorithm for Universal Software Radio Peripheral to Detect GPS Signal
View Sample PDF
Author(s): Ehsan Sheybani (University of South Florida, USA)
Copyright: 2019
Pages: 14
Source title: Strategic Innovations and Interdisciplinary Perspectives in Telecommunications and Networking
Source Author(s)/Editor(s): Natarajan Meghanathan (Jackson State University, USA)
DOI: 10.4018/978-1-5225-8188-8.ch013

Purchase


Abstract

Software-defined radios (SDR) are gradually becoming a practical option for implementing RF communication systems due to their low cost, off-the-shelf availability, and flexibility. Although the analog limitations of the hardware devices in these systems create barriers to some applications, creative algorithms in digital signal processing (DSP) can improve the results. In some cases, this improvement is essential to establishing a robust and reliable communication. The universal software radio peripheral (USRP) is a popular hardware that can be used alongside the SDR. Among many capabilities of USRP and its changeable daughter boards is receiving GPS signals. The GPS satellites transmit data on two main frequencies, L1 (1575.42 MHz) and L2 (1227.60 MHz). In this chapter, the focus is on describing a detailed implementation of the real-time DSP-based algorithm for USRP to detect GPS signal, namely the L1 band that transmits at 1575.42 MHz.

Related Content

S. Vijay Anand, Sathis Kumar B.. © 2023. 12 pages.
Sudarson Rama Perumal, Muthumanikandan V., Sushmitha J.. © 2023. 30 pages.
Sipra Swain, Biswa Ranjan Senapati, Pabitra Mohan Khilar. © 2023. 31 pages.
Uma Mageswari R., Nallarasu Krishnan, Mohammed Sirajudeen Yoosuf, Murugan K., Sankar Ram C.. © 2023. 20 pages.
Divya L., Pradeep Kumar T. S.. © 2023. 15 pages.
Pradeep Kumar T. S., Vetrivelan P.. © 2023. 15 pages.
Vanitha Veerasamy, Rajathi Natarajan. © 2023. 16 pages.
Body Bottom