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Input Analysis for Stochastic Simulations

INTRODUCTION

Simulation has been recognized as a powerful 
tool for forecasting, risk assessment, animation 
and illustration of the evolution of a system in 
many areas (see, e.g., Kelton et al., 2011), includ-
ing business analytics. When uncertainty on the 
behavior of some components of the simulation 
model is present, these random components of 
a stochastic simulation are modeled through the 
use of probability distributions and/or stochastic 
processes that drive the simulation experiments.

In order to illustrate how the concept of a 
random component was introduced in stochastic 
simulations, let us suppose that we are interested 
in simulating the congestion at an automatic 
teller machine (ATM) during a particular lapse 
of time, say during the time interval 0,t


 . To that 

end, we may assume that the ATM is empty and 
idle at time 0. Let A

1
 be the arrival time of cus-

tomer 1, and A
i
 be the inter-arrival time between 

customer i −1  and customer i  (for i = 2 3, ,…). 
Further, let S

i
 be the service-time requirement 

of customer i  at the ATM (for i = 1 2, ,…). Then, 
the waiting time in queue of customer 1 is 
W
q

1 0( ) = , and the waiting times for customers 
i = 2 3, ,… can be obtained using Lindley’s recur-
rence (Lindley, 1952):

W i W i S A
q q i i( ) = −( )+ −{ }−max ,1 0

1
	

(1)

The congestion at the ATM can be simulated 
by using Equation (1) (e.g., on a spreadsheet) to 
produce clients’ waiting times until the last client’s 
departure exceeds time t . However, in order to 
produce the simulation output given by Equation 

(1), we need to produce two streams of random 
inputs: A A

1 2
, ,… , and S S

1 2
, ,…. These streams 

are usually (although not always) produced by 
assuming that the inter-arrival times are indepen-
dent and identically distributed (i.i.d.) random 
variables from a density function f x

A A
,θ( ) , and 

the service times are i.i.d. random variables from 
a density function f x

S S
,θ( ) , where θ

A
 and θ

S
 

are known parameters. Then, standard methods 
for random variate generation (see, e.g., Law 2007) 
can be applied to obtain the required streams 
A A

1 2
, ,… , and S S

1 2
, ,….

We remark that a random component (also 
called random input) of a stochastic simulation is 
a sequence U U

1 2
, ,…of random quantities (may 

be multivariate) that are needed as input to the 
simulation. When the U

i
’s are assumed to be 

i.i.d., a random component is identified by the 
corresponding probability distribution, which is 
typically assumed to be a member of a parametric 
family. Input analysis for stochastic simulations 
is concerned with the appropriate modeling of 
the random components that are considered in a 
simulation model, and is particularly relevant 
when data from the system under study is avail-
able. For the case of our ATM simulation, it will 
be worthwhile to obtain observations from the 
real system, for instance, a sample x x x

n1 2
, , ,…  

of observations from the customers’ inter-arrival 
times, and then choose the input distribution 
f x
A A
,θ( )  that best fits the data x x x

n1 2
, , ,… .

Concepts of probability and statistics, includ-
ing random variables and related definitions such 
as cumulative distribution function (c.d.f.), prob-
ability mass function (p.m.f.) for discrete random 
variables and probability density function (p.d.f.) 
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for continuous random variables, conditional 
probability and independence, point estimation 
and hypothesis testing are explained, e.g., in 
Walpole et al. (2012). At this point, it will be 
convenient to introduce the convention that a 
“family of distributions f x,θ( ) ” will refer to the 
corresponding p.m.f. when the distribution is 
discrete, and to the corresponding p.d.f., when 
the distribution is continuous.

In this chapter we discuss the main techniques 
for input analysis that are proposed for stochastic 
simulation. In the next Section we discuss the 
main families of distributions that that are use-
ful to model a univariate random component as 
well as the use of software for input analysis that 
is distributed along with this chapter. In Section 
Advanced Input Modeling, we discuss input 
modeling techniques that are not considered in 
typical commercial software for input analysis, 
including the fitting of multimodal, correlated 
and time-dependent input from available data, 
and the incorporation of parameter uncertainty 
that is induced from the estimation of the input 
model’s parameters. In the last section, we present 
our conclusions.

STANDARD INPUT MODELING

The conventional approach for input modeling of 
a (univariate) random component consists of 
identifying a standard family of distributions that 
best fits our needs, under the assumption that the 
required random component consists of i.i.d. 
observations from the identified family of distri-
butions. A good selection of a standard family of 
distributions is made when the properties of the 
corresponding family are appropriate for the ex-
periment that we intend to simulate, and/or the 
family of distributions is the one that best fits a 
sample X X

n1
, ,…  of (real) observations from the 

random component. For the particular case where 
no observations are available, a common practice 
is to assume a triangular distribution (see, e.g., 
Law, 2007) and define the parameters based on 

the opinion of an expert. For the case where a 
sampleX X

n1
, ,…  is available, the family of dis-

tributions f x,θ( )  is identified by applying the 
following three steps to each candidate family: (i) 
find a good estimator for parameter θ , (ii) group 
the observations and (visually) compare a plot of 
the relative frequencies versus a plot of the prob-
abilities corresponding to f x,θ( ) , and (iii) com-
pute goodness-of-fit statistics. The software 
Simple Analyzer that is distributed along with this 
chapter can be used to accomplish these three 
steps for the most common families of distribu-
tions.

The standard families of continuous distribu-
tions that are considered in the Simple Analyzer 
are: Uniform, Triangular, Exponential, Weibull, 
Gamma, Normal, Lognormal, and Beta. The first 
two (Uniform and Triangular) are suitable for the 
case where no sample data are available, and the 
rest can be used when observations x x

n1
, ,…  from 

the random component are available. For a given 
family of continuous distributions, the parameters 
that identify the specific family member can usu-
ally be classified as being one of three basic types: 
location, scale or shape parameters (see Law, 2007 
for details).

The standard families of discrete distributions 
that are considered in the Input Analyzer are: Ber-
noulli, Binomial, Negative Binomial and Poisson.

Using the Simple Analyzer

The reader can download an Excel file named 
SimpleAnalyzer.xls from the Web page http://ciep.
itam.mx/~davidm/sofdop.htm. In order to load 
the libraries that are required to run the macros 
in this file, the User must have previously installed 
the “Random Number Generators” (from the same 
Web page). In the worksheets named Continuous 
and Discrete, we may introduce observations 
x x

n1
, ,…  from a random component, and the 

option buttons included in each sheet allow us to 
fit each of the standard family of distributions 
discussed in this chapter; worksheet Continuous 
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