392

Chapter 17

The Role of Compliance
and Conformance in
Software Engineering

José C. Delgado
Instituto Superior Técnico, Universidade de Lisboa, Portugal

ABSTRACT

One of the most fundamental aspects of software engineering is the ability of software artifacts, namely
programs, to interact and to produce applications that are more complex. This is known as interoperability,

but, in most cases, it is dealt with at the syntactic level only. This chapter analyzes the interoperability
problem from the point of view of abstract software artifacts and proposes a multidimensional framework
that not only structures the description of these artifacts but also provides insight into the details of the
interaction between them. The framework has four dimensions (lifecycle, concreteness level, concerns,
andversion). To support and characterize the interaction between artifacts, this chapter uses the concepts
of compliance and conformance, which can establish partial interoperability between the artifacts. This
reduces coupling while still allowing the required interoperability, which increases adaptability and
changeability according to metrics that are proposed and contributes to a sustainable interoperability.

INTRODUCTION

Software systems are neither monolithic nor
self-contained, but rather composed of models,
specifications and working modules that are
interrelated and need to fit together, usually by
design. Decomposing a complex problem into
several simpler and smaller artifacts, in a divide
& conquer approach, is a fundamental software
engineering technique to deal with complexity and

DOI: 10.4018/978-1-4666-6026-7.ch017

improve design characteristics such as reusability,
agility, changeability, adaptability and reliability.

An artifact can be any entity related to soft-
ware engineering such as a concept, a specifica-
tion or a program. The relationships between
artifacts are essential to accomplish the goals of
the software system but, at the same time, they
create dependencies and coupling between them
that translate into constraints and partially hinder
these characteristics.

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

The Role of Compliance and Conformance in Software Engineering

Therefore, software engineering can be
described as the application of engineering
principles, methods and techniques to computer-
based artifacts under quality and sustainability
constraints. Quality means that the problem needs
to be decomposed into the right artifacts and
with the right relationships (satisfying the prob-
lem’s specifications with a good architecture).
Sustainability (Jardim-Goncalves, Popplewell &
Grilo, 2012) means that changes in the problem
specification or in its context should translate
to incremental changes in the artifacts and their
relationships, implemented at a faster rate than
the changes that motivated them.

Quality and sustainability are not exclusive of
software engineering. A car, for example, is a sys-
tem with several thousand components thatneed to
fit together perfectly, under the same constraints.
What distinguishes software engineering is the
fact that, in most cases, artifacts are virtual (easy
to create and to destroy), very flexible and exhibit
a high variability rate. A computer program can
be changed in minutes or even seconds, which is
certainly not the case of physical products such
as cars.

This chapter concentrates on the sustainability
side of software engineering and specifically in
the relationships between software artifacts, in an
attempt to improve the characteristics mentioned
above. The basic tenets that we will use are:

e If an artifact A has no relationship with an
artifact B (does not depend on it), then B
can change freely without impacting A.
This is good for sustainability. Ideally, all
artifacts should be completely independent
(decoupled from all other artifacts);

e Artifacts that have no relationship can-
not cooperate, which means that no value
comes from decomposing a system into ar-
tifacts. Any system needs that artifacts es-
tablish relationships and cooperate, some-
how. This implies some coupling between
some artifacts.

These are conflicting goals. The fundamental
problem that we are trying to solve is how to get
the best compromise, or how to minimize cou-
pling as much as possible while still satisfying
the problem’s specifications.

Relationships between software artifacts can
be established at various levels, such as:

e Conceptual, involving concepts such as
strategies, goals and architectures. For ex-
ample, different artifacts may cooperate to-
wards some common goal or complemen-
tary goals;

e Documental, which pertains mainly to
specifications. For example, a given arti-
fact must use the features defined by some
standard;

e Design, entailing the way artifacts are used
to build a composed system. For example,
any software development method will
include a decomposition of the problem’s
specification and a composition of already
existing artifacts (such as a software li-
brary), trying to match both approaches;

e Operational, in which working artifacts
(such as software modules) interact by
sending messages. The receiver of a mes-
sage must be able to understand the con-
tent of a message and the intention of the
sender in sending that message.

This means thatrelationships between artifacts
are not limited to message based interaction but
can occur at any stage of the artifacts’ lifecycle,
right from their conception, even if the artifact
never becomes active and able to interact, such
as a concept or a document.

At the operational level, in particular, it is also
important to check whether artifacts can be bound
together in a single application or are distributed,
most likely in different computers and probably
implemented in different programming languages.
Solutions to support the interaction between these
artifacts are different in both cases. The concept

393

27 more pages are available in the full version of this document, which may
be purchased using the "Add to Cart" button on the publisher's webpage:
www.igi-global.com/chapter/the-role-of-compliance-and-conformance-in-

software-engineering/108627

Related Content

Eliciting Policy Requirements for Critical National Infrastructure Using the IRIS Framework
Shamal Failyand Ivan Fléchais (2013). Developing and Evaluating Security-Aware Software Systems (pp.
36-55).

www.irma-international.org/chapter/eliciting-policy-requirements-critical-national/72197

Practical Application
(2017). Large-Scale Fuzzy Interconnected Control Systems Design and Analysis (pp. 195-212).
www.irma-international.org/chapter/practical-application/181992

Collaborative Filtering Recommender System for Timely Arrival Problem in Road Transport
Networks Using Viterbi and the Hidden Markov Algorithms

Ofem Ajah Ofem, Moses Adah Aganaand Elemue Oromena Felix (2023). International Journal of Software
Innovation (pp. 1-21).
www.irma-international.org/article/collaborative-filtering-recommender-system-for-timely-arrival-problem-in-road-

transport-networks-using-viterbi-and-the-hidden-markov-algorithms/315660

Representing Micro-Business Requirements Patterns with Associated Software Components
RJ Macasaet, Manuel Noguera, Maria Luisa Rodriguez, José Luis Garrido, Sam Supakkuland Lawrence
Chung (2014). International Journal of Information System Modeling and Design (pp. 71-90).

www.irma-international.org/article/representing-micro-business-requirements-patterns-with-associated-software-

components/120174

ART-Improving Execution Time for Flash Applications

Ming Yingand James Miller (2011). International Journal of Systems and Service-Oriented Engineering (pp.
1-20).

www.irma-international.org/article/art-improving-execution-time-flash/55059

http://www.igi-global.com/chapter/the-role-of-compliance-and-conformance-in-software-engineering/108627
http://www.igi-global.com/chapter/the-role-of-compliance-and-conformance-in-software-engineering/108627
http://www.irma-international.org/chapter/eliciting-policy-requirements-critical-national/72197
http://www.irma-international.org/chapter/practical-application/181992
http://www.irma-international.org/article/collaborative-filtering-recommender-system-for-timely-arrival-problem-in-road-transport-networks-using-viterbi-and-the-hidden-markov-algorithms/315660
http://www.irma-international.org/article/collaborative-filtering-recommender-system-for-timely-arrival-problem-in-road-transport-networks-using-viterbi-and-the-hidden-markov-algorithms/315660
http://www.irma-international.org/article/representing-micro-business-requirements-patterns-with-associated-software-components/120174
http://www.irma-international.org/article/representing-micro-business-requirements-patterns-with-associated-software-components/120174
http://www.irma-international.org/article/art-improving-execution-time-flash/55059

