434

Chapter 19

An Improved Model-Based
Technique for Generating
Test Scenarios from
UML Class Diagrams

Oluwatolani Oluwagbemi
Universiti Teknologi Malaysia, Malaysia

Hishammuddin Asmuni
Universiti Teknologi Malaysia, Malaysia

ABSTRACT

The foundation of any software testing process is test scenario generation. This is because it forecasts
the expected output of a system under development by extracting the artifacts expressed in any of the
Unified Modeling Language (UML) diagrams, which are eventually used as the basis for software testing.
Class diagrams are UML structural diagrams that describe a system by displaying its classes, attributes,
and the relationships between them. Existing class diagram-based test scenario generation techniques
only extract data variables and functions, which leads to incomprehensible or vague test scenarios.
Consequently, this chapter aims to develop an improved technique that automatically generates test
scenarios by reading, extracting, and interpreting the sets of objects that share attributes, operations,
relationships, and semantics in a class diagram. From the performance evaluation, the proposed model-
based technique is efficiently able to read, interpret, and generate scenarios from all the descriptive links
of a class diagram.

INTRODUCTION development life cycle processes (Prasanna &

Chandran, 2009). MBT technique utilizes mod-
Model-based testing (MBT) is an approach used eling tools used in representing stakeholder’s
to assess the quality of software systems based requirements to extract artifacts and generate test
on modeled requirements as captured during the scenarios (Machado & Sampaio, 2010). These
requirements engineering phase of the system modeling tools can be Unified Modeling Language

DOI: 10.4018/978-1-4666-6026-7.ch019

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.



An Improved Model-Based Technique for Generating Test Scenarios

(UML), ArgoUML, Magic Draw or UML Rational
Rose among others. Model-based software test-
ing has to do with the creation of test cases from
abstract software models which are eventually used
to conduct software conformance testing (Sawant
& Shah, 2011). Figure 1 depicts the processes
involved in model-based software testing.

MBT consists of three basic flows of procedural
events described as follows: (i) the modeling tool
used in representing stakeholder’s requirements
(ii) the parser required to extract artifacts from the
modeling diagram and (iii) a test case generation
algorithm. From literature, most of the techniques
for generating test cases in model-based software
testing dwell on sequence, activity, state chart, and
collaboration diagrams. Class diagram-based test
scenario generation techniques are few. The reason
may be due to the complexities associated with
extracting all the attributes, classes, associations,
generalizations, aggregations and compositions in
class diagrams so as to generate comprehensive
scenarios.

Figure 1. Model-based software testing process

UML Models
Consensus

Requirements

T \L save

File extension

D -

evelop

Requirements format (XMI
Prioritization or .MDL)
T \L Parser
Requirements
Elicitations Extract artifacts
from the file
extension
» l Algorithm
Generate
Test Cases

The major activities that take place during
model-based testing as shown in Figure 1 are
described below:

1.  Model Development: This phase has to do
with the construction of a UML-based dia-
gram thatreflects the specified or prioritized
requirements using any of the modeling tools.
The aim of this phase is to generate a testen-
abled model that will contain unambiguous
artifacts required to generate test scenarios.
In this research, the proposed technique was
validated using ArgoUML tool because it is
open source.

2. Parser: Once the modeled diagram is com-
pleted, the next task is to save it. UML stores
its diagram in an .MDL file extension while
ArgoUML stores its diagram in XMI file
extensions for example. Therefore, a funda-
mental task in model-based software testing
is the implementation of a parser that has a
robust capacity of extracting artifacts from
the file extensions of the relevant modeling
tool. In this research, a parser was developed
and implemented using Java programming
language.

3. Test Scenarios Generation: These are de-
rived from the parsed artifacts. The parsed
artifacts are executed to generate and display
test scenarios.

MBT enables testing processes to commence as
soon as the requirement specifications and design
documents are ready. It also reduces testing time
since the testing and development processes can
occur concurrently. Therefore, each output of a
coding exercise can be compared to the generated
test scenarios in order to determine whether the
systemunder development is behaving as expected
or not. With MBT, software systems are hardly
rejected by stakeholders because each output of
the development life cycle can be compared to the
generated test scenarios to ensure conformance.

435



13 more pages are available in the full version of this document, which may
be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/an-improved-model-based-technique-for-

generating-test-scenarios-from-uml-class-diagrams/108629

Related Content

Model-Driven Development of Mobile Information Systems

Ralf Brunsand Jurgen Dunkel (2014). Software Design and Development: Concepts, Methodologies, Tools,
and Applications (pp. 235-252).
www.irma-international.org/chapter/model-driven-development-mobile-information/77708

Migrating Legacy System to the Web: A Business Process Reengineering Oriented Approach
Lerina Aversano, Gerardo Canforaand Andrea De Lucia (2003). Advances in Software Maintenance
Management: Technologies and Solutions (pp. 151-181).
www.irma-international.org/chapter/migrating-legacy-system-webh/4902

Exploring the Use of Social Media to Advance K12 Science Education

Jinjin Ma, Dickson K.W. Chiuand Jeff K.T. Tang (2016). International Journal of Systems and Service-
Oriented Engineering (pp. 47-59).
www.irma-international.org/article/exploring-the-use-of-social-media-to-advance-k12-science-education/177885

Towards a Holistic Approach to Validating Conceptual Models

Jorg Becker (2008). Information Systems Engineering: From Data Analysis to Process Networks (pp. 229-
251).

www.irma-international.org/chapter/towards-holistic-approach-validating-conceptual/23418

Asking Questions: Applying Survey Techniques in Building Successful Enterprise

Mambo G. Mupepi, Jean C. Essila, Abigail Opoku Mensahand Sylvia C. Mupepi (2017). International
Journal of Systems and Service-Oriented Engineering (pp. 44-55).
www.irma-international.org/article/asking-questions/201207



http://www.igi-global.com/chapter/an-improved-model-based-technique-for-generating-test-scenarios-from-uml-class-diagrams/108629
http://www.igi-global.com/chapter/an-improved-model-based-technique-for-generating-test-scenarios-from-uml-class-diagrams/108629
http://www.irma-international.org/chapter/model-driven-development-mobile-information/77708
http://www.irma-international.org/chapter/migrating-legacy-system-web/4902
http://www.irma-international.org/article/exploring-the-use-of-social-media-to-advance-k12-science-education/177885
http://www.irma-international.org/chapter/towards-holistic-approach-validating-conceptual/23418
http://www.irma-international.org/article/asking-questions/201207

