
494

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 22

Code Clone Detection
and Analysis in Open
Source Applications

ABSTRACT

Code clone is a portion of codes that contains some similarities in the same software regardless of changes
made to the specific code such as removal of white spaces and comments, changes in code syntactic, and
addition or removal of code. Over the years, many approaches and tools for code clone detection have
been proposed. Most of these approaches and tools have managed to detect and analyze code clones
that occur in large software. In this chapter, the authors aim to provide a comparative study on current
state-of-the-art in code clone detection approaches and models together with their corresponding tools.
They then perform an empirical evaluation on the selected code clone detection tool and organize the
large amount of information in a more systematic way. The authors begin with explaining background
concepts of code clone terminology. A comparison is done to find out strengths and weaknesses of
existing approaches, models, and tools. Based on the comparison done, they then select a tool to be
evaluated in two dimensions, which are the amount of detected clones and run time performance of the
tool. The result of the study shows that there are various terminologies used for code clone. In addition,
the empirical evaluation implies that the selected tool (enhanced generic pipeline model) gives a better
code clone output and runtime performance as compared to its generic counterpart.

Al-Fahim Mubarak-Ali
Universiti Teknologi Malaysia, Malaysia

Shahida Sulaiman
Universiti Teknologi Malaysia, Malaysia

Sharifah Mashita Syed-Mohamad
Universiti Sains Malaysia, Malaysia

Zhenchang Xing
Nanyang Technological University, Singapore

DOI: 10.4018/978-1-4666-6026-7.ch022

495

Code Clone Detection and Analysis in Open Source Applications

INTRODUCTION

Software maintenance is an important phase in
preserving quality and relevancy of software
due to advances in technology. Maintenance of a
software system is defined as a modification of
software product after the implementation of the
software to improve performance or to adapt the
product to a modified environment (Ueda, Kamiya,
Kusumoto, & Inoue, 2006). Software maintenance
consumes a substantial amount of the software
development life cycle costs. Maintainability is
one of the issues in software maintenance. One of
the factors that affects maintainability of software
is code clone (Roy & Cordy, 2007). Code clone
refers to similar copies of the same instances or
fragments of source codes in software. Code clone
also causes an increase in software maintenance
cost. This happens due to frequent changes carried
out on clone instances (Deissenboeck, Hummel,
Juergens, Pfaehler, & Schaetz, 2010). If a source
code in a program contains bugs, there is a pos-
sibility that other code clone contains the same
bug that requires a fix. Hence, this increases
maintenance work not only due to the increase
of the number of code clone but also the number
of bugs that exist in the code clone itself (Roy &
Cordy, 2007).

Although code clone increases software
maintenance tasks, software community also
acknowledges it as a practice in software devel-
opment. Software developers tend to clone the
codes for various reasons. One of the reasons is
to speed up the development process (Hou, Jacob,
& Jablonski, 2009). This occurs especially when
a new requirement is not fully understood and a
similar piece of code is present in the software
that is not designed for reuse. Programmers usu-
ally clone the code instead of adopting the costly
redesigning approach. Other reasons of cloning a
code during development includes the application
of design pattern or implementation of the same
requirement of a software (Gang, Xin, Zhenchang,
& Wenyun, 2012).

Current code clone research focuses on the
detection and analysis of code clones in order
to help software developers in identifying code
clones in source codes and reuse the source code
in order to decrease the maintenance cost. Many
approaches such as textual based comparison,
token based comparison, and tree based com-
parison approaches are available to detect code
clone. As software grows and becomes legacy,
the complexity of these approaches to detect code
clone increases, thus makes it more cumbersome
to detect code clones.

The issues that occur in current code clone
detection research include conflicting, less dis-
tinguished terminology and definition on types
of code clone. Furthermore, the evaluation differs
as most of the code clone detection tools have
their own set of code clone definition that is used
for evaluation purposes. Therefore, this chapter
aims is to provide a comparative study on current
state-of-the-art in clone detection approaches and
tools, and also to perform an empirical evalua-
tion on selected clone detection tools. In order
to achieve this aim, this chapter focus three main
aspects that are:

1. Code Clone Terminology: There are various
terminologies and definitions regarding the
type of code clone. This chapter attempts to
unify existing terminologies and definitions.
This chapter also looks into scenarios that
contribute to code clone.

2. Code Clone Detection Approaches and
Models: Various approaches and models
have been proposed and implemented as
code clone detection tools in order to detect
code clone. This chapter aims to study the
best approach or model that can be used
for a comparative study. These approaches
are compared and evaluated based on their
strengths and weaknesses. Only tools that
have a complete set of code clone detec-
tion process will be used for the evaluation
process.

14 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/code-clone-detection-and-analysis-in-open-

source-applications/108633

Related Content

Enriching the Model-Driven Architecture with Weakly Structured Information
Dima Panfilenko, Christian Seel, Keith Phalpand Sheridan Jeary (2012). Emerging Technologies for the

Evolution and Maintenance of Software Models (pp. 121-145).

www.irma-international.org/chapter/enriching-model-driven-architecture-weakly/60719

What Do We Know About Buffer Overflow Detection?: A Survey on Techniques to Detect A

Persistent Vulnerability
Marcos Lordello Chaim, Daniel Soares Santosand Daniela Soares Cruzes (2018). International Journal of

Systems and Software Security and Protection (pp. 1-33).

www.irma-international.org/article/what-do-we-know-about-buffer-overflow-detection/221929

An Assessment of Incorporating Log-Logistic Testing Effort Into Imperfect Debugging Delayed S-

Shaped Software Reliability Growth Model
Nesar Ahmad, Aijaz Ahmadand Sheikh Umar Farooq (2021). International Journal of Software Innovation

(pp. 23-41).

www.irma-international.org/article/an-assessment-of-incorporating-log-logistic-testing-effort-into-imperfect-debugging-

delayed-s-shaped-software-reliability-growth-model/290432

A Unified Modelling and Operational Framework for Fault Detection, Identification, and Recovery

in Autonomous Spacecrafts
Andrea Bobbio, Daniele Codetta-Raiteri, Luigi Portinale, Andrea Guiottoand Yuri Yushtein (2014). Theory

and Application of Multi-Formalism Modeling (pp. 239-258).

www.irma-international.org/chapter/a-unified-modelling-and-operational-framework-for-fault-detection-identification-and-

recovery-in-autonomous-spacecrafts/91950

An Empirical Investigation on Vulnerability for Software Companies
Jianping Peng, Guoying Zhangand Chun-Hung Chiu (2022). International Journal of Systems and Software

Security and Protection (pp. 1-15).

www.irma-international.org/article/an-empirical-investigation-on-vulnerability-for-software-companies/304894

http://www.igi-global.com/chapter/code-clone-detection-and-analysis-in-open-source-applications/108633
http://www.igi-global.com/chapter/code-clone-detection-and-analysis-in-open-source-applications/108633
http://www.irma-international.org/chapter/enriching-model-driven-architecture-weakly/60719
http://www.irma-international.org/article/what-do-we-know-about-buffer-overflow-detection/221929
http://www.irma-international.org/article/an-assessment-of-incorporating-log-logistic-testing-effort-into-imperfect-debugging-delayed-s-shaped-software-reliability-growth-model/290432
http://www.irma-international.org/article/an-assessment-of-incorporating-log-logistic-testing-effort-into-imperfect-debugging-delayed-s-shaped-software-reliability-growth-model/290432
http://www.irma-international.org/chapter/a-unified-modelling-and-operational-framework-for-fault-detection-identification-and-recovery-in-autonomous-spacecrafts/91950
http://www.irma-international.org/chapter/a-unified-modelling-and-operational-framework-for-fault-detection-identification-and-recovery-in-autonomous-spacecrafts/91950
http://www.irma-international.org/article/an-empirical-investigation-on-vulnerability-for-software-companies/304894

