
567

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 25

DOI: 10.4018/978-1-4666-6026-7.ch025

Knowware-Based
Software Engineering:

An Overview of its Origin, Essence, Core
Techniques, and Future Development

ABSTRACT

The first part of this chapter reviews the origin of knowware-based software engineering. It originates
from the authors’ experiences in finding new techniques for knowledge-based software engineering while
performing PROMIS, a continuing project series from the 1990s. The key point of PROMIS is to generate
applications automatically by separating the development of domain knowledge from that of software
architecture, with an important innovation of acquiring and summarizing domain knowledge automatically
based on the pseudo-natural language understanding techniques. However, during PROMIS develop-
ment, the authors did not find an appropriate form for the separated domain knowledge. The second part
of the chapter briefly describes how the authors came to the concept of knowware. They stated that the
essence of knowware is its capacity as a commercialized form of domain knowledge. It is also the third
major component of IT after hardware and software. The third part of the chapter introduces the basic
concepts of knowware and knowware engineering. Three life cycle models of knowware engineering
and the design of corresponding knowware implementations are given. The fourth part of the chapter
introduces object-oriented mixware engineering. In the fifth part of the chapter, two recent applications
of knowware technique regarding smart room and Web search are reported. As a further development
of PROMIS, the sixth part of the chapter discusses knowware-based redesign of its framework. In the
seventh part of the chapter, the authors discuss automatic application generation and domain knowledge
modeling on the J2EE platform, which combines techniques of PROMIS, knowware, and J2EE, and the
development and deployment framework (i.e. PROMIS/KW**).

RuQian Lu
Chinese Academy of Sciences, China & Peking University, China

Zhi Jin
Peking University, China & Chinese Academy of Sciences, China

568

Knowware-Based Software Engineering

1. EXPERIMENT OF SEPARATING
APPLICATION KNOWLEDGE
DEVELOPMENT FROM SOFTWARE
DEVELOPMENT: THE ORIGIN

The practice of software engineering shows that
most failures of software development are caused
by failure of requirement analysis, and the reason
for that falls upon lack of good cooperation be-
tween users and software engineers. Users, usu-
ally being unable to exactly and clearly state their
requirements, often change their requirements
freely during the process of software developing,
which makes it difficult for software engineers
to perform a proper requirement analysis and to
guarantee the accomplishment of the developing
job successfully.

At present, requirements analysis researchers
and practitioners use either formal methods or
semi-formal methods with different requirement
specification languages. The advantage of formal
methods is that they provide strict guidance to
software engineers or programmers for writing
requirement specification with the assumption
that user requirement is complete and precise
(Chakraborty et al., 2012; Vassiliou et al., 1990;
Mulopoulos et al., 1999; Kundu, 2007; Yu, 1997;
Wang et. al., 2001; Castro et al., 2002; Fuxman et
al., 2004); otherwise they cannot give any help, no
matter how perfect they are in theory. One of the
solutions to this problem is involving users into
the process of software development as much as
possible, so that they can realize the differences
between the software under development and that
they really need, or between the drafted require-
ment specification and their real requirements.
In this way, users can find the software design
deficiencies at the earliest time. However, because
of the big difference between the knowledge
backgrounds of software engineers and users,
formal methods often cause serious problems of
bad communication between them. The changing
nature of requirements during software design

and development process makes the situation
even worse.

We believe that it is not enough to only attract
users to join the development process, but we
should also give the key of developing software
to users, whenever it is possible. That is to let us-
ers themselves define, design, develop, maintain
and modify their software. This is possible for
some kinds of software, for example, manage-
ment information system (Mansour et al., 2009;
Jarke et al., 1990; Engels et al., 1995; Engels et
al., 1992; Vilkomir et al., 2004; Bhuiyan et al.,
2007; Monroe et. al., 1996). To achieve this goal,
we must remove from users the burden of learn-
ing and mastering the knowledge about software
development and also the burden of requirement
analysis with formal methods. One way for
achieving this is using knowledge. As a result, we
proposed a knowledge-based software engineering
method, KISSME (Knowledge Intensive Software
System Manufacture Engineering), and developed
a tool for supporting this method that is named
as PROMIS (PROtotyping MIS)(Lu et al., 1994,
1995, 1996 (journal), 1996, 1997 (Spain), 1997,
1998, 1998 (journal), 1999, 2000, 2000 (book),
2002, 2003, 2003 (journal); Jin et al., 2003). The
essence of this method is that by using a large
knowledge base to support software develop-
ment, users do not need to master knowledge of
software development or requirements analysis
of related domain. This approach is also made
possible by a requirement description language
BIDL (Business Information Description Lan-
guage). This language is in pseudo-natural style
and contains only expressions and terminology of
the application domain, without any jargon from
the software engineering area. Users who are not
software professionals can use this language to
describe their business. This description will then
be transformed into the final program under the
support of a domain knowledge base throughout
the whole lifecycle of application development.

The following process has been used to design
a pseudo natural language like BIDL:

28 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/knowware-based-software-engineering/108637

Related Content

Hibernate: A Full Object Relational Mapping Service
Allan M. Hart (2009). Handbook of Research on Modern Systems Analysis and Design Technologies and

Applications (pp. 433-468).

www.irma-international.org/chapter/hibernate-full-object-relational-mapping/21082

A Model to Assist the Maintenance vs. Replacement Decision in Information Systems
O. Tolga Pusatliand Brian Regan (2014). Software Design and Development: Concepts, Methodologies,

Tools, and Applications (pp. 1461-1480).

www.irma-international.org/chapter/model-assist-maintenance-replacement-decision/77766

An Ontology for BPM in Digital Transformation and Innovation
Silvia Bogea Gomes, Flavia Maria Santoroand Miguel Mira da Silva (2020). International Journal of

Information System Modeling and Design (pp. 52-77).

www.irma-international.org/article/an-ontology-for-bpm-in-digital-transformation-and-innovation/255112

A Video Recommendation Algorithm Based on Hyperlink-Graph Model
Songtao Shang, Wenqian Shang, Minyong Shi, Shuchao Fengand Zhiguo Hong (2017). International

Journal of Software Innovation (pp. 49-63).

www.irma-international.org/article/a-video-recommendation-algorithm-based-on-hyperlink-graph-model/182536

Architecture Description Languages for the Automotive Domain
Sebastien Faucou, Francoise Simonot-Lionand Yvon Trinquet (2010). Behavioral Modeling for Embedded

Systems and Technologies: Applications for Design and Implementation (pp. 353-376).

www.irma-international.org/chapter/architecture-description-languages-automotive-domain/36349

http://www.igi-global.com/chapter/knowware-based-software-engineering/108637
http://www.irma-international.org/chapter/hibernate-full-object-relational-mapping/21082
http://www.irma-international.org/chapter/model-assist-maintenance-replacement-decision/77766
http://www.irma-international.org/article/an-ontology-for-bpm-in-digital-transformation-and-innovation/255112
http://www.irma-international.org/article/a-video-recommendation-algorithm-based-on-hyperlink-graph-model/182536
http://www.irma-international.org/chapter/architecture-description-languages-automotive-domain/36349

