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Stochastic Neural Network Classifiers

INTRODUCTION

Traditional back propagation algorithms have been 
employed to train neural networks to compute the 
difference between the network’s prediction and the 
true value of the input signal. This error function is 
then used to adjust the values of the synaptic weights 
during training, via an optimization algorithm that 
searches for a global minimum in the error function’s 
parameter space. This approach ignores however the 
stochastic nature of the neuronal code and is therefore 
not suitable for classification tasks involving uncer-
tainty in the input variables. Such uncertainties may 
arise for instance during mapping of text to phonemes, 
or in using diagnostic test results for prognosis of criti-
cally ill patients. In this article we address this issue 
and discuss the use of the Kullback-Leibler distance 
(relative entropy) between the probability distributions 
of the input and output vectors as a cost function to 
be optimized during training of supervised multi-
layer perceptron (MLP) classifiers. Using data from 
the Commission on Cancer’s breast and colorectal 
carcinoma Patient Care Evaluation and the National 
Cancer Institute’s Surveillance, Epidemiology and 
End Results breast carcinoma data sets, we compared 
predictions for 5-year and 10-year survival made by 
our MLP to that of the TNM system. In all categories 
studied, our MLP outperformed the TNM system. The 
improvement in prognostic ability offered by artificial 
neural networks over regression methods, has clinical 
importance for therapy, clinical trials, patient informa-
tion, and quality assurance.

BACKGROUND

Neural networks with back propagation algorithms 
have been used as classifiers in numerous applications 
including face (Lawrence, Giles, Tsoi, & Back, 1997) 
and pattern (Kwak et al., 2002) recognition, analysis 

of electroencephalograms (Khorasani & Weng, 1996) 
for medical diagnostics, analysis of the finite impulse 
response in optoelectronic processors (Silveira, Pati, 
& Wagner, 2002) and financial forcasting (Kaastra & 
Boyd, 1996; Wun, Hua, Jen, Ying, & Soushan, 2006).

The back propagation algorithm computes the 
diference between the network’s output (prediction) 
and a target (or true) value of the input signal of a 
training set (Rumelhart, Hinton, & Williams, 1986). 
This error function is then used during training to adjust 
the values of the synaptic weights via the steepest-
descend or other optimization algorithms that search 
for a global minimum in the error function’s parameter 
space. In many applications however, such as mapping 
text to phonemes (Sejnowski & Rosenberg, 1987), or 
initial symptom-based diagnosis of illness (Yan, Jiang, 
Zheng, Peng, & Li, 2006) where a patient in a doctor’s 
office is asked to grade the severity of his symptoms 
on a scale of 1 to 10, a “probabilistic“ learning algo-
rithm is more approperiate in which both the input 
and output vectors are expressed in probability terms. 
Moreover, the deterministic learning algoithm ignores 
the stochastic nature of the nuronal response (Faisal, 
Selen, & Wolpert, 2008) in vivo. For instance, it has 
been suggested that neuronal variability provides a 
‘‘probabilistic population code’’(Ma, Beck, Latham, 
& Pouget, 2006), which allows the brain to represent 
probability distributions, and perform Bayesian infer-
ence (Knill & Pouget, 2004). The stochastic nature 
of neuronal activity suggests that a given stimulus is 
coded by a distribution of values, representing either 
the spike frequency (rate code) or interspike interval 
(temporal code) (Huxter, Burgess, & O’Keefe, 2003).

MAIN FOCUS OF THE ARTICLE

For an ideal information processing system, the infor-
mation-theoretic distance between the output response 
dY to two stimuli, α0, α1, must be smaller then the cor-
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responding distance of the input response dX to these 
stimuli, i.e.: dY(αo, α1)≤ dX(αo, α1). The choice of which 
distance measure to use is not always trivial and will 
normally depend on the type of stimulus (continuos or 
discrete) and the manner in which the distance chosen 
scales with the size (number of neurons in our case) 
of the information-processing system.

SOLUTIONS AND 
RECOMMENDATIONS

To address the stochastic nature of the neuronal 
response we propose, in this article, the Kullback-
Leibler distance (Kullback & Leibler, 1951) between 
the probability distributions of the input and output 
vectors as the distance of choice. Here, we will use 
the Kullback-Leibler distance as a cost function to be 
optimized during training of a supervised stochastic 
multi-layer perceptron classifier. The Kullback-Liebler 
distance has been used in information-theoretic stud-
ies as well as in various combinatorial optimization 
problems including the travelling sales person (Wu & 
Hsu, 2011), the knapsack problem (Caserta, Quinonez 
Rico, & Marquez Uribe, 2008) and the max-cut problem 
(Klein & Lu, 1996).

As we will show below by treating the Kullback-
Leibler distance (D) between a probability p and its 
approximate solution q as a cost function, a learning 
rule (Δw) can be derived which maximizes the likeli-
hood that a proposition k is true, given a stimulus α 
at the input. Givan a database consisting a number of 
medical cases, for instance, our learning rule can po-
tentially be used to help diagnose new patients based 
on a given set of symptoms they have.

D is an Ali-Sivey class distance measure (Ali & 
Sivley, 1966). This class of distances have the general 
form: dX(αo, α1) = f(ε0[c(Λ(X)]), where Λ(⋅) is the 
likelihood ratio: pX(⋅; α1)/pX(⋅; α0), and c(⋅) is a convex 
function of its argument. ε0[⋅] is the expected value 
with respect to the probability function specified by 
the parameter α0 and f(⋅) is a non-decreasing function. 
D is formally given by (Kullback & Leibler, 1951):
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For which c(x)=x logx, f(x)=x and f(c(1))=0. It 
should be noticed that while the Kullback-Leibler 
distance is not symmetrical it is an additive quantity 
even when the random variables are not identically 
distributed.

MODEL

In our proposed back propagation model (Figure 1), 
minimization of D between p and its approximate 
solution q is carried out iteratively using a multi-layer 
perceptron (MLP) with one input layer, one hidden 
layer and one output layer (Callan, 1999). The induced 
local field of neuron j in the hidden layer is given by:

v w x
j i ji i| |  α α=∑  (1)

where wji is the synaptic weight of hidden neuron j 
connected to source node i in the input layer and xi|α is 
the ith component of the input vector X, given stimulus 
α. A “stimulus“ here may represent for instance an 
object or a pattern to be recognized by the network, 
or a patient with a set of symptoms to be diagnosed. 
Accordingly, the input vector X may represent the 
feature space for the object or pattern recognition 
classifier, or in medical diagnostic application it may 
represent the patient‘s set of symptoms or diagnostic 
results. The output of hidden neuron j for stimulus α 
is then given by:

yj|α=φvj|α (2)

where φ(⋅) is the logistic function, given by:
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Let the induced local field of output neuron k, 
representing a component in the stimulus‘ feature 
space, be given by:
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