
 S

7037

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Category: Systems and Software Engineering

DOI: 10.4018/978-1-4666-5888-2.ch693

Aspect-Oriented Programming

INTRODUCTION

Aspect-oriented programming (AOP) is a prospective
programming technology approach aimed at modulariz-
ing cross-cutting concerns – functionalities in software
products that cannot be implemented by generalized
procedures (like functions or classes) only but, on the
contrary, whose implementations should consist of a
number of code fragments (declarations or statements)
scattered over the whole target program code. Examples
of crosscutting concerns are: security, logging, and error
handling. Adding such functionalities is a complicated
and error-prone task since their implementation code
penetrates the whole code of the target application, so
such task should be modularized and automated, and
those are the main goals of aspect-oriented program-
ming. Currently aspect-oriented programming is at
the stage of transition from research projects to wide
industrial use. The objective of the article is to formu-
late main concepts of aspect-oriented programming,
to analyze its current status, tools, advantages, issues,
and perspectives.

BACKGROUND

A concern in software development is an idea,
consideration, or design of some functionality to
be implemented in the target software application.
Software concerns can be subdivided into common
concerns and cross-cutting concerns. So the task of
software development can be regarded as separating
and implementing its concerns. A common concern is
a concern whose implementation can be made using
generalized procedures (procedures, macros, classes,
or other traditional modular programming features)
only. However, there also exist cross-cutting concerns
whose implementation, due to their nature, should
consist of a set of scattered code fragments penetrating
the code of the target application. Typical example of

a cross-cutting concern is a set of security checks (for
some permission) that should be done in each of or
in most of the target application’s software modules.
If security checks are lacking in the initial version
of the application they should be inserted, which is
an error-prone task, uncomfortable and unsafe to do
“by hand,” especially if the target application is large.
With traditional programming style, fragments of
implementations of cross-cutting concerns are tangled
within the target application code, so it may be difficult
to separate them from each other.

Aspect-oriented programming is intended to solve
the task of implementing and handling cross-cutting
concerns in modular way. Each cross-cutting concern
is implemented by a special, novel kind of module,
referred to as aspect – an implementation of a cross-
cutting concern. The concept of aspect extends the
original concept of software module introduced by
Myers in the 1970s.The definition of an aspect, in our
terms (Safonov, 2008), contains aspect actions – the
code fragments to be activated in some selected points of
the target application. The target application is updated
using an aspect or set of aspects by their weaving –
injecting aspect actions into the desirable join points
of the target application, or enabling to activate aspect
actions in those join points some other way at runtime.
The join points of the target application where to acti-
vate the appropriate aspect actions are filtered on the
basis of weaving rules – the rules to locate join points
in target applications. Weaving rules are parts of aspect
definition. Each weaving rule is associated with some
aspect action. Typical example of a weaving rule and
its associated aspect action is as follows: Before call
of each method of the target application, insert a code
to issue a message of the kind: “Hello M” where M is
the method name. In more traditional terms (Kiczales
et al., 1997), a pointcut is a set of conditions to filter
out the join points. A pointcut may be not related to
any concrete aspect, and different aspects can refer
to the same pointcut. Advice is an aspect action to be
executed at a selected join point. Any part of aspect

Vladimir O. Safonov
St. Petersburg State University, Russia

Category: Systems and Software Engineering

 S

Aspect-Oriented Programming

7038

definition specifying how to weave some advice can
be regarded as a construct of the kind:

if Condition then Advice

where Condition is a condition to hold during execution
of the target program for the Advice to be activated.

Join point model is an approach to implementation
of the concepts of weaving and join points. Join point
models can be different. Weaving can be implemented
at the source code level, at intermediate code level, at
binary object code level, at just-in-time compilation
level, or at runtime (the latter approach is similar to
the concept of a breakpoint in traditional debuggers).

ASPECT-ORIENTED
PROGRAMMING: HISTORY,
TOOLS, AND PERSPECTIVES

History

Ideas of separation of cross-cutting concerns in
software originated long ago, since the 1970s, due to
realizing the importance and fundamental nature of a
cross-cutting concern. For example, the book (Foux-
man, 1979) proposes a programming technology of
scattered actions, and the concept of vertical cut, as a
set of code fragment to implement some cross-cutting
concern. The date of official origin of aspect-oriented
programming is considered to be 1995 when the
first and still the most widely spread aspect-oriented
programming toolkit AspectJ (Kiczales et al., 1997)
was developed for the Java platform by a team from
Xerox PARC supervised by Kiczales, the father of
aspect-oriented programming. AspectJ is an extension
of the Java language by aspect-oriented programming
features (aspect-oriented Java), and its implementation.
AspectJ provides a number of kinds of join points
(e.g., method call, method execution, and exception
handler); constructs for pointcuts and advice; general
construct of aspect definition; inter-type declarations
to be inserted into the code of some other class for the
purpose of using by some aspect. AspectJ has its own
compiler of extended Java – ajc, and its own interactive
development environments integrated to NetBeans and
Eclipse. The influence of AspectJ to researchers and
developers in the area of aspect-oriented programming

is still deep and profound, and many other aspect-
oriented tools have been developed based on similar
ideas and architectures as AspectJ.

Approaches to Aspect-Oriented
Programming and Aspect-
Oriented Programming Tools

For the historical reasons stated above, most aspect-
oriented programming tools are developed for the Java
platform, starting from AspectJ. Typical approaches
of implementing aspect-oriented programming for
Java are as follows: extending the Java language by
aspect-oriented constructs; using XML to configure
aspects; using interceptors to execute aspect-oriented
advice during method calls. Most of the Java AOP tools
follow AspectJ concepts, syntax, and/or semantics.

The AspectJ language includes a variety of useful
AOP features and is still used as a criterion of com-
pleteness for many other AOP framework and tools that
appeared later. The main of them are aspect definitions,
named pointcut definitions and inter-type declarations.
Aspect definitions contain advice declarations which,
in turn, can include thisJoinPoint – type constructs to
handle reflective information about the join points in
the target application.

Aspect definition in AspectJ is a new kind of modu-
lar units that encapsulates and can expand (weave into
target application) some kind of cross-cutting behavior,
like logging or security checks. An example of aspect
definition in AspectJ:

aspect Logging { // Aspect that
 Introduces log-
 ging behavior
 pointcut AnyCall (): // Named
 pointcut
 call (void MyClass.*(..));
 before(): AnyCall () {
 System.out.println(“Hello”
 + thisJoinPoint);
 }
 after(): AnyCall () {
 System.out.println(“Bye”
 + thisJoinPoint);
 }
} // Logging

7 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/aspect-oriented-programming/112402

Related Content

Modeling Using of Triple H-Avatar Technology in Online Multi-Cloud Platform Lab
Vardan Mkrttchian (2015). Encyclopedia of Information Science and Technology, Third Edition (pp. 4162-

4170).

www.irma-international.org/chapter/modeling-using-of-triple-h-avatar-technology-in-online-multi-cloud-platform-

lab/112858

An Efficient Clustering in MANETs with Minimum Communication and Reclustering Overhead
Mohd Yaseen Mirand Satyabrata Das (2017). International Journal of Rough Sets and Data Analysis (pp.

101-114).

www.irma-international.org/article/an-efficient-clustering-in-manets-with-minimum-communication-and-reclustering-

overhead/186861

The Influence of Internet Security on E-Business Competence in Jordan: An Empirical Analysis
Amin A. Shaqrah (2012). Knowledge and Technology Adoption, Diffusion, and Transfer: International

Perspectives (pp. 244-260).

www.irma-international.org/chapter/influence-internet-security-business-competence/66948

Fault-Recovery and Coherence in Internet of Things Choreographies
Sylvain Cherrierand Yacine M. Ghamri-Doudane (2017). International Journal of Information Technologies

and Systems Approach (pp. 31-49).

www.irma-international.org/article/fault-recovery-and-coherence-in-internet-of-things-choreographies/178222

A Guide to Non-Disclosure Agreements for Researchers Using Public and Private Sector

Sources
Paul D. Witman (2009). Information Systems Research Methods, Epistemology, and Applications (pp. 104-

119).

www.irma-international.org/chapter/guide-non-disclosure-agreements-researchers/23471

http://www.igi-global.com/chapter/aspect-oriented-programming/112402
http://www.irma-international.org/chapter/modeling-using-of-triple-h-avatar-technology-in-online-multi-cloud-platform-lab/112858
http://www.irma-international.org/chapter/modeling-using-of-triple-h-avatar-technology-in-online-multi-cloud-platform-lab/112858
http://www.irma-international.org/article/an-efficient-clustering-in-manets-with-minimum-communication-and-reclustering-overhead/186861
http://www.irma-international.org/article/an-efficient-clustering-in-manets-with-minimum-communication-and-reclustering-overhead/186861
http://www.irma-international.org/chapter/influence-internet-security-business-competence/66948
http://www.irma-international.org/article/fault-recovery-and-coherence-in-internet-of-things-choreographies/178222
http://www.irma-international.org/chapter/guide-non-disclosure-agreements-researchers/23471

