
 S

7359

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Category: Systems and Software Engineering

DOI: 10.4018/978-1-4666-5888-2.ch724

State of the Art of Software Architecture 
Design Methods Used in Main Software 
Development Methodologies

INTRODUCTION

Software Architecture (SA) design methods have 
been studied from the early 1990’s decade given the 
increasing complexity and size in lines of code (LOC) 
of modern software systems (Garlan & Shaw, 1994). 
Nowadays, according to Kim & Garlan (2010), a ma-
ture area has been already reached given that: “today 
we find growing use of standards, architecture-based 
development methods, and handbooks for architectural 
design and documentation” (p. 1216).

However, due to the significant industrial demands 
toward software systems with an increasing complex-
ity (e.g., new and multiple technologies development 
platforms and more technical and user-oriented demand 
of requirements) (Aleti, Buhnova, Grunske, Koziolek 
& Meedeniya, 2013), and due to the permanent need 
for efficient and effective software design process 
(Angelov, Grefen, & Greefhorst, 2011), the SA design 
methods are still a relevant research and academic area.

Software Architecture can be defined as: “Funda-
mental concepts or properties of a system in its environ-
ment embodied in its elements, relationships, and in 

the principles of its design and evolution” (ISO/IEC/
IEEE 42010, 2011, p. 2). The ISO/IEC 12207 standard 
reports that the Software Architecture Design and the 
Detailed Design activities are fundamental parts of 
the set of activities to be realized from Requirements 
Analysis until Software Construction (SWEBOK, 
2004). SA design consists essentially in specifying its 
core components, the interrelationships among them, 
and a set of essential attributes expected for the final 
software. This is realized in a high level of abstrac-
tion (Weinreich & Buchgeher, 2012) and adequate SA 
design methods must be used. Therefore, missing this 
activity or a wrong conduction of it will have nega-
tive effects in further software development phases, 
and lately in the final software. Hence, SA design is 
a relevant activity for the development of software 
systems, and given the current complexity of modern 
software systems, it can be also considered a design 
challenge (Aleti et al., 2013).

There are a myriad of Software Development 
Methodologies (SDMs) since several decades ago 
(Rodriguez, Mora, Vargas, O’Connor & Alvarez, 2008; 
Vavpotic & Vasilecas, 2011). All of them provide either 

Reyes Delgado Paola Yuritzy
Instituto Tecnológico de Aguascalientes, Mexico

Mora Tavarez José Manuel
Universidad Autónoma de Aguascalientes, Mexico

Duran-Limon Hector Alejandro
Universidad de Guadalajara, Mexico

Rodríguez-Martínez Laura Cecilia
Instituto Tecnológico de Aguascalientes, Mexico

Mendoza González Ricardo
Instituto Tecnológico de Aguascalientes, Mexico

Rodríguez Díaz Mario Alberto
Instituto Tecnológico de Aguascalientes, Mexico



Category: Systems and Software Engineering

 S

State of the Art of Software Architecture Design Methods Used in Main Software Development Methodologies

7360

an explicit or implicit guidance for a SA design. Nev-
ertheless, their real utilization in the software develop-
ment practice is scarcely reported (Chatzoglou, 1997; 
Fitzgerald, 1998). Furthermore, implicit and explicit 
SA design methods use a varied structure of activities 
and artifacts, as well as a particular non-standard no-
menclature. This dual problem: the lack of utilization 
of SA design methods and the non-standardization of 
them precludes their correct application by software 
professionals.

Thus, in this article we review and compare the 
implicit and explicit SA design methods included in 
four well-known international Software Development 
Methodologies plus a recently reported SDM for 
service-oriented software engineering. These Software 
Development Methodologies are:

1. 	 Model-Based (System) Architecting and 
Software Engineering (MBASE), (MBASE, 
2000, 2003).

2. 	 IBM Rational Unified Process for Systems Z 
(Cantor, 2003; Péraire, Edwards, Fernandes, 
Mancin, & Carroll, 2007).

3. 	 Unified Process for Education (UPEDU) 
(Robillard, Kructen & d’Astous, 2004, 2012).

4. 	 Team Software Process (TSP) (Humphrey, 1998; 
Humphrey, Chick, Nichols & Pomeroy-Huff, 
2010; Donald, 2000).

5. 	 Service-oriented Software Development 
Methodology (SoSDM) (Rodríguez et al., 2009a).

This article aims to help software engineering 
academicians and professionals with the provision of a 
compact but substantive descriptive-comparative guide 
on a set of main SA design methods. However, this 
article does not pursue to be a direct learning source 
for any of the SA design methods here presented. Space 
limitations preclude this aim. Interested readers are 
refereed to additional particular readings.

BACKGROUND

This section presents fundamental concepts of: Soft-
ware Engineering, Software Development Method-
ologies, Software Design, Software Architecture, and 
Software Architecture Design Methods. A systematic 
literature review process (Kitchenham & Charters, 

2007; Kitchenham et al., 2009) was conducted by re-
viewing ten top journals in the discipline of Software 
Engineering. These journals were: Information and 
Software Technology (IST), Journal of Systems and 
Software (JSS), Software Practice and Experience 
(SPE), IEEE Software (SW), IEEE Transactions on 
Software Engineering and Methodologies (TOSEM), 
IEEE Transactions on Software Engineering (TSE), 
ACM Transactions on the Web, Advances in Engi-
neering Software, IEEE Transactions on Services 
Computing, and Journal of Systems Architecture. 
The keywords used were: software development 
methodologies, software design, software architecture, 
software architecture design methods, MBASE, RUP, 
UPEDU, TSP and SoSE methodology. The search for 
this review, carried out in three academic databases, 
produced 543 papers. The first and third co-author 
filtered them by reading both title and abstract. Those 
papers that were not directly relevant to the focus of 
out research were excluded. As a result, we obtained 
28 articles. The second author did a random (about 5% 
of the total) evaluation for classifying the selected vs 
non-selected papers in which no disagreements were 
found, Finally, these 28 papers were completed with 
18 additional research products (e.g., journals papers, 
conference proceedings, technical reports, books and 
specialized websites) referenced in the 28 core pa-
pers and/or suggested by all authors. The selection of 
journals was based on their recognized ranking status 
(Glass & Chen, 2005). This set of 46 papers served as 
knowledge source for deriving the presented founda-
tions of this section.

Software Engineering

The IEEE Computer Society defines Software En-
gineering as “(1) The application of a systematic, 
disciplined, quantifiable approach to the development, 
operation, and maintenance of software; that is, the 
application of engineering to software. (2) The study 
of approaches as in (1).” (SWEBOK, 2004, p. 1-9). 
According to the SEWBOK (2004), Software Engi-
neering can be divided into ten areas of knowledge: 
(1) Software Requirements, (2) Software Design, 
(3) Software Construction, (4) Software Testing, (5) 
Software Maintenance, (6) Software Configuration 
Management, (7) Software Engineering Management, 
(8) Software Engineering Process, (9) Software Engi-



 

 

10 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/state-of-the-art-of-software-architecture-design-

methods-used-in-main-software-development-methodologies/112433

Related Content

Conditioned Slicing of Interprocedural Programs
Madhusmita Sahu (2019). International Journal of Rough Sets and Data Analysis (pp. 43-60).

www.irma-international.org/article/conditioned-slicing-of-interprocedural-programs/219809

Enhancing the Mobile User Experience Through Colored Contrasts
Jean-Éric Peletand Basma Taieb (2018). Encyclopedia of Information Science and Technology, Fourth

Edition (pp. 6070-6082).

www.irma-international.org/chapter/enhancing-the-mobile-user-experience-through-colored-contrasts/184306

Two Rough Set-based Software Tools for Analyzing Non-Deterministic Data
Mao Wu, Michinori Nakataand Hiroshi Sakai (2014). International Journal of Rough Sets and Data Analysis

(pp. 32-47).

www.irma-international.org/article/two-rough-set-based-software-tools-for-analyzing-non-deterministic-data/111311

Knowledge Management for Development (KM4D)
Alexander G. Flor (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp. 5077-

5084).

www.irma-international.org/chapter/knowledge-management-for-development-km4d/184210

The Role of Management Consultants in Long-Term ERP Customization Trajectories: A Case

from the Italian Local Government
Gian Marco Campagnolo (2012). Phenomenology, Organizational Politics, and IT Design: The Social Study

of Information Systems  (pp. 176-195).

www.irma-international.org/chapter/role-management-consultants-long-term/64684

http://www.igi-global.com/chapter/state-of-the-art-of-software-architecture-design-methods-used-in-main-software-development-methodologies/112433
http://www.igi-global.com/chapter/state-of-the-art-of-software-architecture-design-methods-used-in-main-software-development-methodologies/112433
http://www.irma-international.org/article/conditioned-slicing-of-interprocedural-programs/219809
http://www.irma-international.org/chapter/enhancing-the-mobile-user-experience-through-colored-contrasts/184306
http://www.irma-international.org/article/two-rough-set-based-software-tools-for-analyzing-non-deterministic-data/111311
http://www.irma-international.org/chapter/knowledge-management-for-development-km4d/184210
http://www.irma-international.org/chapter/role-management-consultants-long-term/64684

