
 S

7381

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Category: Systems and Software Engineering

DOI: 10.4018/978-1-4666-5888-2.ch726

Systems and Software Engineering 
in IT System Development

INTRODUCTION

In any development process of an Information Technol-
ogy (IT) system, the team responsible for system imple-
mentation needs to acquire the necessary knowledge 
about the problem to be solved. However, this approach 
does not guarantee that the implemented system will 
yield the value expected by stakeholders. The develop-
ment process in an IT system has a complexity that is 
process inherent, and System Engineering can provide 
a response that considers this complexity, and supports 
Software Engineering along the IT system life cycle.

Every development process used by Software En-
gineering to create the software of an IT system – be 
it Agile, Prototyping, Unified Process, or any other 
process or method – has activities that are always pres-
ent, such as teamwork management, the management of 
the knowledge that is acquired through the interaction 
among the different team members, and between these 
IT system developers and stakeholders.

The presence of people throughout the IT system 
life cycle is a factor that brings complexity to system 
development, due to the different interests, desires, 
values and emotions of human beings. Another issue 
that brings complexity to system development is that 
there are several companies that do not have IT system 
development as its core business, although they have 
some kind of Information Technology (IT) department, 
which is built to be efficient in the development process.

This article is about System Engineering during 
IT software system life cycle, supporting Software 
Engineering activities, with focus on a socio-technical 
approach that promotes interactions among IT system 
development team and stakeholders, to create value, 
differentiation and contribute to organizational ef-
ficiency and performance.

BACKGROUND

Traditional engineering disciplines (e.g. electrical, 
mechanical, civil, chemical) are concerned with 
transforming physical entities from one form into 
another; they follow physical laws or properties and 
relations. System Engineering and Software Engineer-
ing are engineering disciplines that do not have a core 
theory, physical law or properties; these engineering 
disciplines deal with the work activities to develop a 
system or software.

System Engineering

In the United States, during the Second World War, 
the postwar period and the beginning of the Cold War, 
there was a need to develop techniques based on General 
Systems Theory to create great defense systems. En-
gineers, scientists and managers developed techniques 
that have become known by (1) Systems Engineering for 
the design and development of systems, (2) Operational 
Research to analyze the Armament Systems and (3) 
Systems Analysis to compare and evaluate projects. 
These techniques have been developed because the sys-
tems that were being created had a level of complexity 
that could not be fully understood with the knowledge 
that was taught by the classical schools of Engineering 
and Management (Hughes, 2005).

Since its formalization, Systems Engineering has 
been an activity based on practice; it is considered 
more a method than a discipline founded in books and 
formalisms. Unlike the traditional disciplines of engi-
neering, Systems Engineering does not follow a set of 
fundamental phenomena based on physical properties 
and relations; instead, it is associated to knowledge to 

Marcel Jacques Simonette
Universidade de São Paulo, Brazil

Edison Spina
Universidade de São Paulo, Brazil



 S

Category: Systems and Software EngineeringSystems and Software Engineering in IT System Development

7382

orchestrate these physical properties and relations, to 
deal with system emergent properties.

Hitchins (2008) argues that Systems Engineering 
view systems as dynamic and open, potentially adapt-
able to other systems in the same environment, and 
capable of showing emerging properties, capabilities 
and behaviors. This approach emphasizes the dynamic 
interaction not only among the parts of the system, but 
also among a system and systems external to it. The 
emphasis is on performance, features, functionality, 
and dynamic processes. Hitchins also argues that when 
engineers deal with simple systems, the results of clas-
sical engineering approach or Systems Engineering 
approach may be similar, but the result in complex 
systems is different.

Kossiakoff & Sweet (2003), Sydenham (2004), 
INCOSE (2006), and Wasson (2006) define System 
Engineering using significant words, such as: interdisci-
plinary, iterative, socio-technical, and whole. However, 
these words refer to how System Engineering must be 
done; they are not a term definition. The authors of 
this work use the definition given by Hitchins (2008): 
“Systems engineering is the art and science of creating 
whole solutions to complex problems.” 

Software Engineering

The term “Software Engineering” was first coined 
in 1968, in a conference hosted by NATO Science 
Committee, devoted to the subject of producing large 
and complex software systems: The NATO Software 
Engineering Conferences (Naur & Randell, 1969). The 
Engineering metaphor was not selected at random. 
Engineering is about the functions, build, structures 
and architecture, and it aims to have a whole equal to 
the sum of the parts. Sommerville (2011) states that 
Software Engineer is an engineering discipline that is 
concerned with all aspects of software production, and 
that it encompasses a set of three fundamental elements: 
Methods, tools and procedures to enable engineers to 
control all the aspects of the software development 
process, a basis for the construction of high quality 
software. Software Engineering encompasses a process, 
a collection of methods (practice) and a collection of 
tools that allow professionals to build high quality 
software (Pressman, 2010).

IEEE (2010) specifies that there is the presence 
of scientific knowledge and experience during the 
software system development process, stating that 
Software Engineering is the systematic application of 
scientific and technological knowledge, methods, and 
experience to the design, implementation, testing and 
documentation of software.

Just like Systems Engineering, Software Engineer-
ing definitions refer to how it must be done. The SEMAT 
(Software Engineering Methods and Theory) Call for 
Action states that as it is today, Software Engineering 
is suffering from immature practices, and that it is 
necessary to redefine Software Engineering based on 
a solid theory, proven principles, and best practices 
(Jacobson at all, 2012). SEMAT founders evolved the 
call for action into a vision statement and, in accordance 
with this vision, SEMAT focused on the development 
of a foundation for Software Engineering, consisting 
of a kernel and a language to define methods, practices 
and kernel elements.

The first step of SEMAT was to identify a com-
mon ground for Software Engineering, a kernel of 
essential elements that are universal to all software 
system development efforts, and a simple language 
for describing methods and practices. The essential 
elements compose a kernel that contains a small 
number of “things we always work with” and “things 
we always do” when developing software systems. 
These elements and the relationship between them 
occur in three areas of concern: Customer, Solution, 
and Endeavor, as represented in Figure 1.

Figure 1 shows the seven essential elements present 
in a software system development project. They are 
called alphas (Alpha is an acronym for Abstract-Level 
Progress Health Attribute). An alpha is characterized by 
a set of states that represent their progress and health. 
As an example, the alpha Work moves through the 
states of: initiated, prepared, started, under control, 
concluded, and closed. Each state has a checklist that 
specifies the criteria that the system development team 
must identify to determine and control the current state 
of the alpha. This checklist is also used to identify what 
to do to reach the next state. These states indicate the 
progress and health of the endeavor to steer the proj-
ect to a successful conclusion (Jacobson at all, 2013; 
SEMAT Community, 2013).



 

 

7 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/systems-and-software-engineering-in-it-system-

development/112435

Related Content

Learner Engagement in Blended Learning
Kristian J. Spring, Charles R. Grahamand Tarah B. Ikahihifo (2018). Encyclopedia of Information Science

and Technology, Fourth Edition (pp. 1487-1498).

www.irma-international.org/chapter/learner-engagement-in-blended-learning/183863

Idiosyncratic Volatility and the Cross-Section of Stock Returns of NEEQ Select
Yuan Ye (2022). International Journal of Information Technologies and Systems Approach (pp. 1-16).

www.irma-international.org/article/idiosyncratic-volatility-and-the-cross-section-of-stock-returns-of-neeq-select/307030

Factors Influencing the Adoption of ISO/IEC 29110 in Thai Government Projects: A Case Study
Veeraporn Siddooand Noppachai Wongsai (2017). International Journal of Information Technologies and

Systems Approach (pp. 22-44).

www.irma-international.org/article/factors-influencing-the-adoption-of-isoiec-29110-in-thai-government-projects/169766

Supporting the Module Sequencing Decision in ITIL Solution Implementation: An Application of

the Fuzzy TOPSIS Approach
Ahad Zare Ravasan, Taha Mansouri, Mohammad Mehrabioun Mohammadiand Saeed Rouhani (2014).

International Journal of Information Technologies and Systems Approach (pp. 41-60).

www.irma-international.org/article/supporting-the-module-sequencing-decision-in-itil-solution-implementation/117867

A Domain Specific Modeling Language for Enterprise Application Development
Bahman Zamaniand Shiva Rasoulzadeh (2018). International Journal of Information Technologies and

Systems Approach (pp. 51-70).

www.irma-international.org/article/a-domain-specific-modeling-language-for-enterprise-application-development/204603

http://www.igi-global.com/chapter/systems-and-software-engineering-in-it-system-development/112435
http://www.igi-global.com/chapter/systems-and-software-engineering-in-it-system-development/112435
http://www.irma-international.org/chapter/learner-engagement-in-blended-learning/183863
http://www.irma-international.org/article/idiosyncratic-volatility-and-the-cross-section-of-stock-returns-of-neeq-select/307030
http://www.irma-international.org/article/factors-influencing-the-adoption-of-isoiec-29110-in-thai-government-projects/169766
http://www.irma-international.org/article/supporting-the-module-sequencing-decision-in-itil-solution-implementation/117867
http://www.irma-international.org/article/a-domain-specific-modeling-language-for-enterprise-application-development/204603

