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INTRODUCTION

A basically important problem in Image Engineering 
(IE), Pattern Recognition (PR), and Computer Vi-
sion (CV) is how to find a suitable representation of 
multivariate data.

In many cases, the primitive data sets or observa-
tions are organized as data matrices (or tensors), and 
described by linear (or multi-linear) combination 
models. From the algebraic perspective, the formula-
tion of dimensionality reduction can be regarded as 
decomposing the original data matrix into two factor 
matrices. The canonical methods, such as principal 
component analysis (PCA), linear discriminant analysis 
(LDA), independent component analysis (ICA), and 
vector quantization (VQ) et al., are the exemplars of 
such low-rank approximations. They differ from one 
another in the statistical properties attributable to the 
different constraints imposed on the component ma-
trices and their underlying structures; however, they 
have something in common that there is no constraint 
in the sign of the elements in the factorized matrices. In 
other words, the negative component or the subtractive 
combination is allowed in the representation.

In contrast, a new paradigm of factorization — 
Non-negative Matrix Factorization (NMF) is quite 
different in this aspect. NMF is a recently developed, 
biologically inspired method for nonlinearly finding 
purely additive, sparse, linear, and low-dimension 
representations of non-negative multivariate data to 
consequently make latent structure, feature or pattern 
in the data clear (Lee, 1999).

NMF makes all representation components non-
negative (only purely additive representations are 
allowable) and nonlinearly implements dimension 
reduction. Psychological and physiological evidence 
for NMF is that perception of the whole is based on 
perception of its parts, which is compatible with the 
intuitive notion of combining parts to form a whole 

(Lee, 1999), therefore it is considered to grasp the es-
sence of intelligent or biological data representation 
in some degree.

Far beyond a mathematical exploration, the phi-
losophy underlying NMF, which tries to formulate a 
feasible model for learning object parts, is closely rel-
evant to perception mechanism. While the parts-based 
representation seems intuitive, it is indeed based on 
physiological and psychological evidence: perception 
of the whole is based on perception of its parts (Paatero, 
1997). In fact there are two complementary connota-
tions in non-negativity — non-negative component 
and purely additive combination. On the one hand, the 
negative values of both observations and latent compo-
nents are physically meaningless in many kinds of real 
world data, such as image analysis tasks. Meanwhile, 
the discovered prototypes commonly correspond with 
certain semantic interpretation.

Besides, NMF usually produces a sparse represen-
tation of data, which has been shown to be a useful 
middle ground between a completely distributed repre-
sentation and a unary representation (Field 1994). The 
non-negativity constraint will lead to sort of sparseness 
naturally (Lee, 1999), which is proved to be a highly 
effective representation distinguished from both the 
completely distributed and the solely active component 
description (Field, 1994).

When NMF is interpreted as a neural-network 
learning algorithm depicting how the visible variables 
are generated from the hidden ones, the parts-based 
representation is obtained from the additive model. A 
positive number indicates the presence and a zero value 
represents the absence of some event or component. 
This conforms nicely to the dualistic properties of 
neural activity and synaptic strengths in neurophysiol-
ogy: either excitatory or inhibitory without changing 
sign (Lee, 1999).
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BACKGROUND

Given an M dimensional random vector x with non-
negative elements, whose N observations are denoted 
as xj, j = 1, 2, …, N, let data matrix be X = [x1, x2, …, 
xN] ∈ �≥

×
0
M N , NMF seeks to decompose X into non-

negative M × L basis matrix U = [u1, u2, …, uL] ∈ 
�≥

×
0
M L  and non-negative L × N coefficient matrix V 

= [v1, v2, …, vN] ∈ �≥
×
0
L N , such that X ≈ UV , where 

�≥
×
0
M N  stands for the set of M × N element-wise non-

negative matrices. This can also be written as the 

equivalent vector formulax u V
j i iji

L
≈

=∑ 1
.

It is obvious that vj is the weight coefficient of 
the observation xj on the columns of U, the basis vec-
tors or the latent feature vectors of X. Hence, NMF 
decomposes each data into the linear combination of 
the basis vectors. Because of the initial condition L 
<< min(M, N), the obtained basis vectors are incom-
plete over the original vector space. In other words, 
this approach tries to represent the high dimensional 
stochastic pattern with far fewer bases, so the perfect 
approximation can be achieved successfully only if the 
intrinsic features are identified in U.

In most cases, NMF is viewed as a dimensional-
ity reduction and feature extraction technique with L 
<< M, L << N; that is, the basis set learnt from NMF 
model is incomplete, and the energy is compacted. 
However, in general, L can be smaller, equal or larger 
than M. However, there are fundamental differences 
in the decomposition for L < M and L > M. It is a sort 
of sparse coding and compressed sensing with over-
complete basis when L > M. Hence, L needs not be 
limited by the dimensionality of the data.

In this situation, it may benefit from the sparseness 
due to both non-negativity and redundant representa-
tion. One approach to obtain this NMF model is to 
perform the decomposition on the residue matrix E 
= X − UV repeatedly and sequentially (Gupta, 2010).

Considering NMF as a kind of matrix factorization 
model, three essential questions need answering: (1) 
existence, whether the nontrivial NMF solutions exist; 
(2) uniqueness, under what assumptions NMF is, at 
least in some sense, unique; (3) effectiveness, under 
what assumptions NMF is able to recover the ”right 
answer.” The existence was showed via the theory of 

Completely Positive (CP) Factorization for the first 
time in (Vasiloglou, 2009).

The last two concerns were first mentioned and 
discussed from a geometric viewpoint in (Donoho, 
2004). Complete NMF X = UV is considered firstly 
for the analysis of existence, convexity, and computa-
tional complexity. The trivial solution always exists as 
U = X and V = IN. By relating NMF to CP Factoriza-
tion, it is showed that every non-negative matrix has 
a nontrivial complete NMF (Vasiloglou, 2009). As 
such, CP Factorization is a special case, where a non-
negative matrix X ∈�≥

×
0
M M is CP if it can be factored 

in the form X = UUT, U ∈ �≥
×
0
M L . The minimum L is 

called the CP-rank of X. When combining that the set 
of CP matrices forms a convex cone with that the 
solution to NMF belongs to a CP cone, solving NMF 
is a convex optimization problem (Vasiloglou, 2009).

Using the bilinear model, complete NMF can be 
rewritten as linear combination of rank-one nonnega-
tive matrices expressed by

X
i i

i

L

i i
i

L

= =
= =
∑ ∑U V U V

i i i i
�

1 1

( )T 	 (1)

where U•i is the i-th column vector of U while Vi• is the 
i-th row vector of V, and ° denotes the outer product of 
two vectors. The smallest L making the decomposition 
possible is called the non-negative rank of the non-
negative matrix X, denoted as rank+(X). Moreover, it 
satisfies the following trivial bounds:

rank rank
+

( ) ( ) min( , )X X≤ ≤ M N 	 (2)

While PCA can be solved in polynomial time, 
the optimization problem of NMF, with respect to 
determining the non-negative rank and computing the 
associated factorization, is more difficult to solve than 
its unconstrained counterpart does. It is in fact NP-hard 
when requiring both the dimension and the factorization 
rank of X to increase, which was proved via relating 
it to NP-hard intermediate simplex problem (Vavasis, 
2009). This is also the corollary of CP programming, 
since the CP cone cannot be described in polynomial 
time despite its convexity. In the special case when 
rank(X) = 1, complete NMF can be solved in polyno-
mial time. However, the complexity of complete NMF 
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