
Category: Educational Technologies

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

2600

Teaching in Visual Programming 
Environments

INTRODUCTION

This article is an extension of the authors’ previous work 
“Toward a Framework of Programming Pedagogy” 
(Lau & Yuen, 2009). It aims to highlight the recent 
development of programming pedagogy, in particular 
those related to visual programming environments.

The persistent problems of high attritions among 
students and under-representation of females in the 
computing academia have been widely documented. For 
example, Sloan and Troy (2008) found that the annual 
attrition rate among freshmen and sophomores who 
majored in computer science (CS) in the US has been 
reported to average 19% and at some schools to be 66%. 
According to Lasserre and Szostak (2011), the dropout 
rate in CS courses was between 30% to 50%. While 
females earned 57% of all the undergraduate degrees 
in the US in 2009, only 18% of all the computer and 
information sciences graduates were females (National 
Center for Women & Information Technology, 2010).

To address the problems more fundamentally, it is 
argued that more effort should be made to transform 
computing education in high school. Cuny (2012) 
described an ambitious project called CS 10K that 
“aims to develop effective new high school computing 
curricula and get it into 10,000 high schools taught by 
10,000 well-prepared teachers by 2016” (p. 35) in the 
US. Internationally, many other countries also seize the 
opportunity to revamp their high school CS curricula. 
The Shut Down or Restart? The Way Forward for Com-
puting in the UK Schools (SDoR?) report supported 
the replacement of information and communication 
technology (ICT) with three inter-related concepts, 
namely digital literacy, information technology, and 
CS in the national curriculum (Snyder, 2012) among 
other recommendations.

All these initiatives were aimed to attract and 
retain students in CS programmes. Programming 
pedagogy has played a significant role in the teaching 
and learning of computer programming, which often 
includes the use of a variety of programming tools 
(Pears et al., 2007). These tools aid novice program-
mers to develop programs through program visualisa-
tion and algorithm animation (Yuen, 1999, 2006). In 
our previous review on programming pedagogy (Lau 
& Yuen, 2009), we identified seven approaches of 
teaching computer programming based on an initial 
framework that conceptualised pedagogy along the 
two dimensions, namely programming knowledge 
and programming representation. We also predicted 
that with a trend towards user friendliness, there will 
be a gradual shift from concept-textual pedagogy to 
concept-visual pedagogy, which is realised through 
visual programming. As such, this article examines 
the recent use of visual programming environments in 
classrooms and reports its effectiveness. It first gives a 
synopsis of the seven programming pedagogies. Next 
it focuses on the discussion of three popular integrated 
development environments (IDEs) that support visual 
programming: Alice, Greenfoot, and Scratch. Finally, 
it envisages the future of visual programming and 
concludes with suggestions for further developments.

BACKGROUND

Drawing on the pertinent literature of computer pro-
gramming from our previous review (Lau & Yuen, 
2009), we identified seven programming pedagogies. 
The following paragraphs provide a brief description 
of each approach.

Wilfred W. F. Lau
The University of Hong Kong, China

Allan H. K. Yuen
The University of Hong Kong, China

DOI: 10.4018/978-1-4666-5888-2.ch253



Teaching in Visual Programming EnvironmentsCategory: Educational Technologies

 E

2601

The structured programming approach was intended 
to “support the production of correct, understandable 
programs which are easy to modify and maintain” 
(Freiburghouse & Liskov, 1973, p. 5). Control structures 
of sequence, selection, and repetition were allowed 
while the use of the GOTO statement was not encour-
aged (Dijkstra, 1968). A top-down design method was 
adopted to facilitate the development of a structured 
program. Programs were improved successively 
through stepwise refinement. The problem solving 
approach consisted of four steps, namely understand-
ing, designing, writing, and reviewing in developing 
a program (Barnes, Fincher, & Thompson, 1997). 
Thompson (1997) claimed that using the approach, 
“a novice can make substantial progress in complet-
ing a programming task before beginning to write any 
program code” (p. 324). Gries (1974) argued that it 
was pedagogically unsound to assume that students 
should have learnt programming after providing them 
with tools and examples. He suggested the four-phase 
process of problem solving by Polya (1957) in order 
to address this problem.

The software development approach integrated 
both the problem solving skills and the programming 
skills needed into a single process, and thus gave 
a framework for beginning students (Deek, 1999). 
Deek (1999) noted three types of difficulties faced by 
students when learning to program: (1) deficiencies 
in problem solving strategies and tactical knowledge; 
(2) ineffective pedagogy of programming instruction; 
and (3) misconceptions about syntax, semantics, and 
pragmatics. It was shown that this approach helped to 
address all the three types of difficulties. The small 
programming approach reduced cognitive load on nov-
ices by programming in a “small” scale. Programming 
by Number enabled students to start programming in a 
step-by-step manner with the flexibility in the design 
of the solution to a problem (Glaser, Hartel, & Garratt, 
2000). Brusilovsky, Kouchnirenko, Miller, and Tomek 
(1994) proposed three approaches of teaching introduc-
tory programming, namely the incremental approach, 
the mini-language approach, and the sub-language 
approach. These three approaches offered simple 
and small language subsets and a visually attractive 
metaphor embedded in a context-rich environment to 
facilitate novices learning to program. The language 
teaching approach argued that research in the learner 
strategies in second language pedagogy may reveal 

insights into programming pedagogy (Baldwin & 
Macredie, 1999). Deek and Friedman (2001) noted 
that the common element that exists in both domains 
(problem solving and program development) suggested 
“new ways for students to transfer skills between do-
mains” (p. 9).

The learning theory approach emphasised the 
importance of learning theory in programming educa-
tion. In the assessment of programming performance, 
Lister and Leaney (2003) recommended a criterion-
referencing approach to grading, in which explicit and 
clear criteria were set for each grade with reference to the 
Bloom’s Taxonomy of Educational Objectives (Bloom, 
1956). Macfarlane and Mynatt (1988) investigated 
the effectiveness of advance organizer in teaching the 
syntax of arrays. While the experimental and control 
groups did not differ on syntactic knowledge (near 
transfer), the experimental group performed best in 
semantic knowledge (far transfer).

TEACHING WITH VISUAL 
PROGRAMMING

Jimenez-Peris, Pareja-Flores, Patino-Martinez, and 
Velazquez-Iturbide (2000) made the prediction of a 
day in a 2020 university that “current lab program-
ming environments are truly educational, and they are 
highly visual and intuitive. They detect and accurately 
diagnose most errors…” (p. 132). As we enter the 
second decade of the millennium, it is increasingly 
apparent that visual programming with the support of 
IDEs has become a trend, and has brought new impetus 
and learning experiences to students, specifically for 
school children who are easily allured by the media-
rich culture.

Davies, Polack-Wahl, and Anewalt (2011) surveyed 
the environments (command-line environment, an 
IDE, or both) that students used for programming in 
the US, and found that while 15% of the students used 
command-line environment for both CS1 and CS2 
courses, 47% and 40% used graphical IDE for CS1 
and CS2 courses respectively. Mason, Cooper, and de 
Raadt (2012) reported that with regard to the environ-
ments/tools being used for introductory programming 
courses, there has been “the movement away from using 
text editors and command line compilers only -from 
approximately 45% of these instructors using no IDE/



 

 

7 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/teaching-in-visual-programming-

environments/112676

Related Content

A Bayesian Network Model for Probability Estimation
Harleen Kaur, Ritu Chauhanand Siri Krishan Wasan (2015). Encyclopedia of Information Science and

Technology, Third Edition (pp. 1551-1558).

www.irma-international.org/chapter/a-bayesian-network-model-for-probability-estimation/112559

The Effects of Sampling Methods on Machine Learning Models for Predicting Long-term Length

of Stay: A Case Study of Rhode Island Hospitals
Son Nguyen, Alicia T. Lamere, Alan Olinskyand John Quinn (2019). International Journal of Rough Sets

and Data Analysis (pp. 32-48).

www.irma-international.org/article/the-effects-of-sampling-methods-on-machine-learning-models-for-predicting-long-

term-length-of-stay/251900

Design and Implementation of Smart Classroom Based on Internet of Things and Cloud

Computing
Kai Zhang (2021). International Journal of Information Technologies and Systems Approach (pp. 38-51).

www.irma-international.org/article/design-and-implementation-of-smart-classroom-based-on-internet-of-things-and-cloud-

computing/278709

A Multimodal Sentiment Analysis Method Integrating Multi-Layer Attention Interaction and Multi-

Feature Enhancement
Shengfeng Xieand Jingwei Li (2024). International Journal of Information Technologies and Systems

Approach (pp. 1-20).

www.irma-international.org/article/a-multimodal-sentiment-analysis-method-integrating-multi-layer-attention-interaction-

and-multi-feature-enhancement/335940

Analyzing the Use of Information Systems in Logistics Industry
Shaligram Pokharel (2009). Information Systems Research Methods, Epistemology, and Applications (pp.

225-246).

www.irma-international.org/chapter/analyzing-use-information-systems-logistics/23478

http://www.igi-global.com/chapter/teaching-in-visual-programming-environments/112676
http://www.igi-global.com/chapter/teaching-in-visual-programming-environments/112676
http://www.irma-international.org/chapter/a-bayesian-network-model-for-probability-estimation/112559
http://www.irma-international.org/article/the-effects-of-sampling-methods-on-machine-learning-models-for-predicting-long-term-length-of-stay/251900
http://www.irma-international.org/article/the-effects-of-sampling-methods-on-machine-learning-models-for-predicting-long-term-length-of-stay/251900
http://www.irma-international.org/article/design-and-implementation-of-smart-classroom-based-on-internet-of-things-and-cloud-computing/278709
http://www.irma-international.org/article/design-and-implementation-of-smart-classroom-based-on-internet-of-things-and-cloud-computing/278709
http://www.irma-international.org/article/a-multimodal-sentiment-analysis-method-integrating-multi-layer-attention-interaction-and-multi-feature-enhancement/335940
http://www.irma-international.org/article/a-multimodal-sentiment-analysis-method-integrating-multi-layer-attention-interaction-and-multi-feature-enhancement/335940
http://www.irma-international.org/chapter/analyzing-use-information-systems-logistics/23478

