The Implementation of Large-Scale Decision-Making Support Systems: Problems, Findings, and Challenges

Manual Mora

Autonomous University of Aguascalientes, Mexico

Ovsei Gelman

Universidad Nacional Autónoma de México, Mexico

Guisseppi Forgionne

University of Maryland – Baltimore County, USA

Francisco Cervantes

Universidad Nacional Autónoma de México, Mexico

ABSTRACT

This article reviews the literature-based issues involved in implementing large-scale decision-making support systems (DMSSs). Unlike previous studies, this review studies holistically three types of DMSSs (model-based decision support systems, executive-oriented decision support systems, and knowledge-based decision support systems) and incorporates recent studies on the simulation of the implementations process. Such an article contributes to the literature by organizing the fragmented knowledge on the DMSS implementation phenomenon and by communicating the factors and stages involved in successful or failed large-scale DMSS implementations to practitioners.

INTRODUCTION

This article reviews the literature-based issues involved in implementing large-scale decision-making support systems (DMSSs). Unlike previous studies, this review studies holistically three types of DMSSs (model-based decision support systems, executive-oriented decision support systems, and knowledge-based decision support systems) and incorporates recent studies on the simulation of the implementations process. The article ends

with a brief discussion of the practical and research challenges for the implementation process. Such a study contributes to the literature by organizing the fragmented knowledge on the DMSS implementation phenomenon and by communicating the factors and stages involved in successful or failed DMSS implementations to practitioners.

A large-scale DMSS can be defined as a specialized computer-based information system designed to support some, several, or all phases of a decision-making process that requires substantive financial, organizational, human, technical, and knowledge resources for being deployed in organizations (Forgionne, 1991; Forgionne, Mora, Cervantes, & Kohli, 2000; Turban, 1995). From its initial theoretical conceptualization (in the early 1970s by Scott Morton, 1971) until now (Forgionne, Mora, Gupta, & Gelman, 2005), these systems have been designed with different architectures. Consequently, these systems have also provided distinctive decision support. Such systems can be grouped into four main categories: model-based decision support systems (Sprague & Carlson, 1982), executive-oriented decision support systems (Rockart, 1979), knowledge-based decision support systems (Feigenbaum, McCorduck, & Nii, 1988), and general decision-making support systems (Forgionne et al., 2000). Table 1 summarizes the main support provided by each type of DMSS.

Table 1. Decisional	support	of main	types	of DMSSs

	PHASE/ ACTIVITY	ASE/ACTIVITY Model-Based DSS Executive-Oriented DSS Knowledge-Based DSS		General DMSS	
•	INTELLIGENCE Identify objectives Recognize problem Gather data	Few explored	 Drill-down analysis Data query Graph & tabular data access DM/KD analysis 	Qualitative reasoning Problem solving Intelligent advice	Decisional support from executive and knowledge-based DSS modules
•	DESIGN Formulate model Establish criteria Generate alternatives	Few explored	Few explored	Qualitative reasoning Problem solving Intelligent advice	Decisional support from knowledge- based DSS modules
•	CHOICE Evaluate alternatives Select best alternative	What-if analysis Goal-seeking analysis Sensitivity analysis Value/utility analysis	Few explored	Qualitative reasoning Problem solving Intelligent advice	Decisional support from model-and knowledge-based DSS modules
IMF	PLEMENTATION Decision confidence System effectiveness Implement decision	Few explored	 Drill-down analysis Data query Graph & tabular data access 	Few explored	Decisional support from executive-based DSS module
•	LEARNING Analysis Synthesis	Few explored	Few explored	Automated learning (CBR, NN, etc.)	Decisional support from related tools like knowledge management system (KMS)

Large-scale DMSSs are highly appreciated and required in large organizations because relevant benefits can be achieved after a successful implementation. Among the main benefits reported are better decision quality, enhancement of decision makers' mental models, improved analytical skills, better communication, and a reduction in decision time (Eom, Lee, Kim, & Somarajan, 1998; Feigenbaum et al., 1988; Leidner, 1996; Liebowitz, 1990; Rockart & DeLong, 1988; Turban, 1995; Tyran & George, 1993; Udo & Guimaraes, 1994; Watson, Rainer, & Koh, 1991). Still, failures in DMSS implementation are not scarce and are economically significant (Alavi & Joachiminsthaler, 1992; Gill, 1995; Glover & Watson, 1992). The main reported causes of failure (Mora, Cervantes, Gelman, Forgionne, Mejia, & Weitzenfeld, 2002; Mora, Forgionne, Gelman, Cervantes, Weitzenfeld, & Raczyinski, 2003) are the inherent high complexity of the overall process, where multiple financial, organizational, human, technological, sociocultural, and political issues interact, and the nature of the organizational environment. Consequently, the number of current DMSSs in organizations is less

than expected, and benefits are only reached by organizations that are aware of the complexity of this process and pursue these projects with managerial, technical, and organizational adequacy.

THE BARRIERS TO ACHIEVING SUCCESSFUL DMSS IMPLEMENTATIONS

The concept of implementation has two meanings in the information systems literature: (a) a reduced view that refers to a stage of the systems development life cycle, which starts with the business modeling activity and ends with the system delivering activity in the organization (Satzinger, Jackson, & Burd, 2000), or (b) an extended view that starts with the acknowledgement or discovering of a new need-technology pair and ends with the entire institutionalization of the system deployed using such technology (Finlay & Forghani, 1998; Tyran & George, 1994). Figure 1 exhibits the difference between these two concepts.

9 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the publisher's webpage: www.igi-global.com/chapter/implementation-large-scale-decision-making/11285

Related Content

Exposing "Pluralistic Ignorance" to Reduce Youth Violence in Political Spaces

Obadiah Dodo (2022). *International Journal of Strategic Decision Sciences (pp. 1-9)*. www.irma-international.org/article/exposing-pluralistic-ignorance-to-reduce-youth-violence-in-political-spaces/301550

Optimal Thresholds of an Infinite Buffer Discrete-Time Two-Server System with Triadic Policy

Veena Goswamiand G. B. Mund (2013). *Management Theories and Strategic Practices for Decision Making* (pp. 279-293).

www.irma-international.org/chapter/optimal-thresholds-infinite-buffer-discrete/70962

Concepts Seeds Gathering and Dataset Updating Algorithm for Handling Concept Drift

Nabil M. Hewahiand Ibrahim M. Elbouhissi (2015). *International Journal of Decision Support System Technology (pp. 29-57).*

 $\underline{\text{www.irma-}international.org/article/concepts-seeds-gathering-and-dataset-updating-algorithm-for-handling-concept-drift/133210}$

Visualization-Based Decision Support Systems: An Example of Regional Relationship Data

Vicki L. Sauter, Srikanth Mudigonda, Ashok Subramanianand Ray Creely (2013). *Engineering Effective Decision Support Technologies: New Models and Applications (pp. 162-180).*www.irma-international.org/chapter/visualization-based-decision-support-systems/75694

Qualitative Comparative Analysis

Malcolm J. Beynon (2008). Encyclopedia of Decision Making and Decision Support Technologies (pp. 751-756).

 $\underline{www.irma-international.org/chapter/qualitative-comparative-analysis/11317}$