
710

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 38

Bridging the Academia-Industry
Gap in Software Engineering:

A Client-Oriented Open Source
Software Projects Course

ABSTRACT

Too often, computer science programs offer a software engineering course that emphasizes concepts,
principles, and practical techniques, but fails to engage students in real-world software experiences.
The authors have developed an approach to teaching undergraduate software engineering courses that
integrates client-oriented project development and open source development practice. They call this ap-
proach the Client-Oriented Open Source Software (CO-FOSS) model. The advantages of this approach
are that students are involved directly with a client, nonprofits gain a useful software application, and
the project is available as open source for other students or organizations to extend and adapt. This
chapter describes the motivation, elaborates the approach, and presents the results in substantial detail.
The process is agile and the development framework is transferrable to other one-semester software
engineering courses in a wide range of institutions.

MOTIVATION

Most computer science programs offer a software
engineering course and view it as a critical link in
ensuring the career-readiness of computer science

graduates. However, too often this course is taught
in terms of abstract principles, failing to engage
students in real-world software experiences. Many
of the skills required in industry are best learned
by hands-on practice, such as the need for effective

Bonnie K. MacKellar
St. John’s University, USA

Mihaela Sabin
University of New Hampshire, USA

Allen B. Tucker
Bowdoin College, USA

DOI: 10.4018/978-1-4666-7363-2.ch038

711

Bridging the Academia-Industry Gap in Software Engineering
﻿

communication among developers, or the need to
interact with a non-technical client. Thus, students
who have never engaged in a hands-on project in
software engineering enter the workforce with
gaps in their skills.

It is, however, difficult to bring a significant
software development experience into the confines
of a one-semester course in academia. The most
common approach has been to introduce a “toy
project,” which is a small project designed by the
instructor, and have students work in teams to com-
plete the project by the end of the semester. The
advantage of this approach is that students will ide-
ally learn to work in teams and share responsibility
for developing a codebase. The disadvantages are
that the project may be oversimplified, and students
gain no experience interacting with clients or with
code written by others.

Another approach is to work with local compa-
nies in the private sector who sponsor proprietary
client-oriented software projects. This has been
used successfully by a number of schools, espe-
cially larger programs that already have established
linkages with companies (Judith, Bair, & Börstler,
2003; Tadayon, 2004; Tan & Jones, 2008). Another
setting that favors this approach is an internship
course with the projects being developed onsite
at local companies. The advantage is that students
gain experience with real clients with high stakes
in real projects. However, these projects are often
standalone, one-off projects since companies
may be reluctant to have students work on their
internal codebase, or to develop mission critical
software. This means that it may be difficult to
get enough time and attention from personnel
at the company while the students work on the
project. Also, the project will normally become
the property of the company, meaning that it can-
not be freely shared with other schools trying to
adopt a similar approach.

A third approach is to engage students in Free
and Open Source Software (FOSS) development
by having them contribute to a large and active
open source project, such as Linux or Mozilla

(Marmorstein, 2011; Ellis, Morelli, DeLanerolle,
& Hislop, 2007). The advantage of this approach
is that instructors and students can gain from the
mentoring achieved through communication with
the project’s professional developers, and in some
cases they contribute marginally to the “live” code
base or the user documentation. The disadvantages
of this approach are that most ongoing projects
are large and complex, their developers may not
be accessible, and given the time it takes to come
up to speed in the project, students may gain little
practical experience in a one-semester course.

A fourth approach, which occupies a middle
ground between the proprietary client-oriented
project model and the full-scale FOSS project,
is to engage students in FOSS development via a
relatively small project that fits in a one semester
course, with a local nonprofit organization as the
client. Local nonprofits are often happy to collabo-
rate on these projects since they may have needs
for mission-critical software systems that are not
well met by the commercial software industry,
yet they have limited technology budgets. Thus,
it is relatively easy for an instructor to locate and
collaborate with a local nonprofit. However, many
instructors may still be unsure of how to get started
or how to organize such a course.

This chapter describes our collective experi-
ence with the fourth approach, which we call
client-oriented free and open source software
development (CO-FOSS). The big advantage of
treating client-oriented open source projects is
the very openness of the project. An open source
project developed in the context of one course for
one client can be reused, extended, and adapted
for new clients by subsequent iterations of the
same course, or even by courses at different in-
stitutions. By providing not just the codebase but
the course organization itself as an open source
project, a collection of such projects can be built
up to be used as models at different institutions.
In addition, the tools and practices of open source
projects provide a readymade infrastructure for
software project courses.

22 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/bridging-the-academia-industry-gap-in-software-

engineering/121869

Related Content

The Direct and Indirect Effects of Computer Uses on Student Success in Math
Sunha Kim, Mido Chang, Namok Choi, Jeehyun Parkand Heejung Kim (2018). K-12 STEM Education:

Breakthroughs in Research and Practice (pp. 322-340).

www.irma-international.org/chapter/the-direct-and-indirect-effects-of-computer-uses-on-student-success-in-math/190107

Viewing the Implementation of the CCSS through the Lens of One Transformative District-

University Partnership
P. Michael Lutz (2015). STEM Education: Concepts, Methodologies, Tools, and Applications (pp. 1051-

1061).

www.irma-international.org/chapter/viewing-the-implementation-of-the-ccss-through-the-lens-of-one-transformative-

district-university-partnership/121888

The Design of an Out-of-School Program Focused on Community-Centered Engineering

Challenges
Joni M. Lakin, Daniela Marghitu, Edward W. Davisand Virginia A. Davis (2023). Developing and Sustaining

STEM Programs Across the K-12 Education Landscape (pp. 45-70).

www.irma-international.org/chapter/the-design-of-an-out-of-school-program-focused-on-community-centered-

engineering-challenges/329939

A Novel Strategy to Improve STEM Education: The E-Science Approach
Samar I. Swaid (2015). STEM Education: Concepts, Methodologies, Tools, and Applications (pp. 1215-

1226).

www.irma-international.org/chapter/a-novel-strategy-to-improve-stem-education/121898

Coding, Computational Thinking, and Cultural Contexts
Libby Huntand Marina Umaschi Bers (2021). Teaching Computational Thinking and Coding to Young

Children (pp. 201-215).

www.irma-international.org/chapter/coding-computational-thinking-and-cultural-contexts/286051

http://www.igi-global.com/chapter/bridging-the-academia-industry-gap-in-software-engineering/121869
http://www.igi-global.com/chapter/bridging-the-academia-industry-gap-in-software-engineering/121869
http://www.irma-international.org/chapter/the-direct-and-indirect-effects-of-computer-uses-on-student-success-in-math/190107
http://www.irma-international.org/chapter/viewing-the-implementation-of-the-ccss-through-the-lens-of-one-transformative-district-university-partnership/121888
http://www.irma-international.org/chapter/viewing-the-implementation-of-the-ccss-through-the-lens-of-one-transformative-district-university-partnership/121888
http://www.irma-international.org/chapter/the-design-of-an-out-of-school-program-focused-on-community-centered-engineering-challenges/329939
http://www.irma-international.org/chapter/the-design-of-an-out-of-school-program-focused-on-community-centered-engineering-challenges/329939
http://www.irma-international.org/chapter/a-novel-strategy-to-improve-stem-education/121898
http://www.irma-international.org/chapter/coding-computational-thinking-and-cultural-contexts/286051

