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A Particle Swarm 
Optimizer for Constrained 

Multiobjective Optimization

ABSTRACT

Generally, constraint-handling techniques are designed for evolutionary algorithms to solve Constrained 
Multiobjective Optimization Problems (CMOPs). Most Multiojective Particle Swarm Optimization 
(MOPSO) designs adopt these existing constraint-handling techniques to deal with CMOPs. In this 
chapter, the authors present a constrained MOPSO in which the information related to particles’ infea-
sibility and feasibility status is utilized effectively to guide the particles to search for feasible solutions 
and to improve the quality of the optimal solution found. The updating of personal best archive is based 
on the particles’ Pareto ranks and their constraint violations. The infeasible global best archive is ad-
opted to store infeasible nondominated solutions. The acceleration constants are adjusted depending on 
the personal bests’ and selected global bests’ infeasibility and feasibility statuses. The personal bests’ 
feasibility statuses are integrated to estimate the mutation rate in the mutation procedure. The simula-
tion results indicate that the proposed constrained MOPSO is highly competitive in solving selected 
benchmark problems.

INTRODUCTION

In real-world applications, most optimization prob-
lems are subject to various types of constraints. 
These problems are known as the constrained 

optimization problems (COPs) or constrained 
multiobjective optimization problems (CMOPs) if 
more than one objective function is involved. Com-
prehensive surveys (Michalewicz & Schoenauer, 
1996; Mezura-Montes & CoellCoello, 2006) show 
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a variety of constraint handling techniques have 
been developed to address the deficiencies of evo-
lutionary algorithms (EAs), in which, their original 
design are unable to deal with constraints in an 
effective manner. These techniques are mainly 
targeted at EAs, particularly genetic algorithms 
(GAs), to solve COPs (Runarsson & Yao, 2005; 
Takahama & Sakai, 2006; Cai & Wang, 2006; 
Oyama et al., 2007; Wang et al., 2007, 2008; Tes-
sema & Yen, 2009) and CMOPs (Binh & Korn, 
1997; Fonseca & Fleming, 1998; CoelloCoello 
& Christiansen, 1999; Deb et al., 2002; Jimenez 
et al., 2002; Kurpati et al., 2002; Chafekar et al., 
2003; Ray & Won, 2005; Hingston et al., 2006; 
Geng et al., 2006; Zhang et al., 2006; Harada et 
al., 2007; Woldesenbet et al., 2009). During the 
past few years, due to the success of particle swarm 
optimization (PSO) in solving many unconstrained 
optimization problems, research on incorporating 
existing constraint handling techniques in PSO for 
solving COPs is steadily gaining attention (Parso-
poulus & Vrahatis, 2002; Pulido & CoelloCoello, 
2004; Zielinski & Laur, 2006; Lu & Chen, 2006; 
Liang & Suganthan, 2006; Wei & Wang, 2006; He 
& Wang, 2007; Cushman, 2007; Liu et al., 2008; 
Li et al., 2008;). Nevertheless, many real world 
problems are often multiobjective in nature. The 
ultimate goal is to develop multiobjective par-
ticle swarm optimization algorithms (MOPSOs) 
that effectively solve CMOPs. In addition to this 
perspective, the recent successes of MOPSOs 
in solving unconstrained MOPs have further 
motivated us to design a constrained MOPSO to 
solve CMOPs.

Considering a minimization problem, the gen-
eral form of the CMOP with k objective functions 
is given as follows:

Minimize 

f(x) = [f1(x), f2(x),…, fk(x)], x=[x1, x2,…, xn]∈
ℜn 	 (1)

subject to

gj(x)≤0, j=1,2,…,m; 	 (2a)

hj(x)=0, j=m+1,…,p; 	 (2b)

x x x
i i i
min max,≤ ≤ i=1,2,…,n, 	 (2c)

where x is the decision vector of n decision vari-
ables. Its upper (x

i
max ) and lower (x

i
min ) bounds 

in Equation (2c) define the search space, S n⊆ ℜ . 
gj(x) represents the jth inequality constraint, while 
hj(x) represents the jth equality constraint. The 
inequality constraints that are equal to zero, i.e., 
gj(x*)=0, at the global optimum (x*) of a given 
problem are called active constraints. The feasible 
region (F⊆S) is defined by satisfying all constraints 
(Equations (2a)-(2b)). A solution in the feasible 
region (x∈F) is called a feasible solution, other-
wise it is considered an infeasible solution.

A general MOPSO algorithm consists of the 
five key procedures: 

1. 	 Particles’ flight (PSO equations), 
2. 	 Particles’ personal best (pbest) updating 

procedure, 
3. 	 Particles’ global best archive (Gbest) main-

tenance method, 
4. 	 Particles’ global best selection scheme, and 
5. 	 Mutation operation. 

In the proposed design, we integrate the 
particles’ dominance relationship, and their con-
straint violation information to each of these key 
procedures. The constraint violation information 
is formulated by two simple metrics that represent 
the particles’ feasibility status individually and as 
a whole. The final goal is to solve the CMOPs by 
influencing the particles’ search behavior in such 
that will lead them towards the feasible regions 
and the optimal Pareto front.
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