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INTRODUCTION

In recent years, the enormous increase of independent
databases widely accessible through computer networks
has strongly motivated the interoperability among data-
base systems. Interoperability allows the sharing and
exchange of information and processes in heterogeneous,
independent, and distributed database systems. This
task is particularly important in the field of decision
support systems. These systems through the analysis of
data in very large databases identify the unusual trends
in particular applications for creating opportunities for
new business or for forecasting production needs.

Currently, in the research community, geographic
information systems (GISs) and multidimensional data-
bases (MDDBs) are seen as the most promising and
efficient information technologies for supporting deci-
sion making. Geographic information systems, which are
geographic-database- (GDB) dependent, through graphic
display functionalities and complex spatial data struc-
tures, facilitate the storage and manipulation of geo-
graphic data.

Multidimensional databases refer either to statistical
databases (Chan & Shoshani, 1981; Rafanelli & Shoshani,
1990), which mostly represent applications in the socio-
economic area, or OLAP (online analytical processing)
databases (Agrawal, Gupta & Sarawagi, 1997; OLAP Coun-
cil, 1997), which emphasize business applications. Similar
to statistical databases, OLAP databases have a data
model that represents one or more “summary measures”
over a multidimensional space of “dimensions,” where
each dimension can be defined over a hierarchy of “lev-
els” (Shoshani, 1997). In this area, mostly the aspects of
handling the multidimensional data and summarizations
over the dimensions have been largely investigated.
However, unlike OLAP databases, statistical databases
may have only the summarized data available for reasons
of privacy. These databases are often referred to by the
term “summary databases.”

The common key elements between geographic and
multidimensional data that allow effective support in data
cooperating are basically time and space. In literature,
space has been considered as a bridge element for coop-
erating GDB and MDDB, on which our attention will be
focused.

A feature notably lacking in most GDBs is the capabil-
ity of accessing and manipulating business data, which
are stored in MDDBs. We tackle this task by a novel
approach that shares a number of characteristics and
goals with the approaches proposed in literature. They
aimed at defining a set of operators applicable to either
spatial or summary data without dealing with the “logical
organization” of databases at all. Similar to these models,
our approach is addressed for cooperative query answer-
ing but it provides a data model for the summary data
manipulation in the context of GDB. In addition, the
above-mentioned models are based on multidimensional
data formed by solely one location dimension, whereas in
our approach we also consider data defined by more than
one location dimension and we analyze their effect on data
modeling and query answering.

BACKGROUND

In the database community, the cooperation between
GDB and MDDB is indicated by taking into account the
notion of map generalization. Map generalization is in-
tended to consider the impact of scale and resolution on
spatial data querying (see Muller, Lagrange, & Weibel,
1995). In this context, some attempts have been made to
look for a standard set of multidimensional (or statistical)
operators based on aggregation and disaggregation.

Gargano, Nardelli, & Talamo (1991), for instance, have
extended the relational algebra essentially by defining
two algebraic operators that are able to manipulate either
the spatial extension of geographic data or summary data.
They are named G-Compose and G-Decompose. The first

operator is denoted by );( YFComposeG yX− , where X and

Y are two nonintersecting subsets of attributes of a
relation R . In the case of spatial data, it “merges” all tuples
of R  which are already projected on Y  in a single one
whose Y  value is generated by the application of the
spatial fusion function. This function, which is repre-
sented by yF , takes a subset of geometric attributes of a
given type and returns a single geometric attribute of the
same type. In the case of summary data, yF  aggregates the

numeric value of Y  attributes. The effect of G-Decompose
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is that all tuples of  R projected on Y are “decomposed.”
In this proposal, the fundamental issues of hierarchies
and data aggregation for either spatial or summary data
have been omitted.

These issues are discussed later in an approach pro-
posed by Rigaux and Scholl (1995). In this work, the
authors make the bridge between the geographic and
statistical disciplines by defining an aggregation tech-
nique over a hierarchy of space partitions. Their model is
based on the concept of “partition” that is used for
partitioning either geometric space or other sets (e.g., a
set of people). They introduced a relation called cover,
which is represented by the schema },,,{ 1 gn AAAO …= ,

such that )(� O
gA  is a partition and there is a bi-univocal

functional dependency between the attributes nAA ,,1 …

and gA . They defined the geometric projection operator

on a subset of attributes },,{ 1 qAAS …=  as follows:

))((( , Onestapply
gASSGeo

π∑ ,

where )(�
g

OA  is the N1NF grouping operation (see

Abiteboul & Bidoit, 1986) on S , )�(
g, Onest ASS  gives the

result with the schema },,,{ 1 BAA q…  where )( gAsetB = , and

∑Geo  performs the spatial aggregation function UNION on

attribute )( gAsetB = . They used the relation cover for
representing summary data, in which each descriptive
attribute A  can be defined on a hierarchical domain. The
same operator is redefined as below:

)))((( : Ogennestapply AASGeo ′∑ ,

where before applying the nest operator, the abstrac-
tion level of hierarchy to which the attribute A  belongs
is changed. It is indicated by )(: Ogen AA ′ . Note, in this case

∑Geo performs the numeric aggregation function SUM.

The model proposed by Rigaux and Scholl (1995) is
addressed to generate maps in multiple representations of
data using the hierarchy of space partitions and the
hierarchy induced by a partial order relationship in the
domain of an attribute. In this proposal only one location
dimension hierarchy for summary data is considered.

While the above models give a formal definition for the
cooperation between spatial and multidimensional envi-
ronments, some other works consider the architectural
aspects of an integration system. For instance, Kouba,
Matousek, and Miksovsky (2000) tried to identify some
requirements for the correct and consistent functionality
of system interconnection. They proposed an integration

module that has two different roles: One is the transforma-
tion of data from external data sources, and the other
refers to the integration of GIS and data warehouse through
their common components, that is, location. The GIS
under consideration is based on an object-oriented model
that identifies the basic GIS elements that are classes and
objects. In the GIS system, the structure of the geographi-
cal class hierarchy is stored in a metadata object for
accessing directly from the integration module. Further-
more, the implementation aspects of the integration of the
Microsoft SQL Server 7 Data Warehouse and ArcView
GIS System are discussed.
Sindoni G.,  De Francisci S.,  Paolucci M., and  Tininini L.
(2001)  have considered the integration of several spa-
tiotemporal data collections of the Italian National Statis-
tics Institute. The integration system is defined mainly by
a historical database containing the temporal variation of
territorial administrative partitions, a statistical data ware-
house providing statistical data from a number of different
surveys, and a GIS providing the cartography of the
Italian territory up to census tract level. The implemented
cooperative system manages the maps of the temporal
evolution of a certain number of administrative regions
and links to these maps the content of the above-men-
tioned statistical database of a given year.

A LOGICAL APPROACH

For describing the logical data model, we consider an
object-oriented GDB and a cube-based MDDB, the main
components of which are indicated in Table 1.

Cooperation by Binding Elements

In order to clarify the need for such cooperation, let us
consider the case of a GDB user wishing to display a query
result on a map with different combinations of geographic
and nongeographic data. Let the query be as follows:
“Find all the Italian regions which are adjacent to the
Tuscany region, in which the number of cars sold in 1990,
in the case of <Corolla>, was greater than 10,000.”

For answering this query, it is necessary not only to
retrieve the adjacent regions, but also to perform some
OLAP operations on the time and product dimensions of
the Car_Sales cube shown in Figure 1a. The former ana-
lyzes the topological spatial relationship (i.e., adjacency)
and can be performed only in GDB. The solution of such
queries depends essentially on a data model that enables
the component databases to cooperate but remain inde-
pendent. The main idea of our approach is to explore the
additional input that can come to GDB from MDDB.

As we have shown in Table 1 and in Figure 1b, an
object-oriented geographic database is characterized by
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