
 1205

�
)������
����������� ��
���	��

���	

Aristides Dasso
Universidad Nacional de San Luis, Argentina

Ana Funes
Universidad Nacional de San Luis, Argentina

Copyright © 2005, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

INTRODUCTION

As a general rule, all engineering applications use math-
ematics or mathematical tools as a basis for their develop-
ment. However, software engineering is an exception to
this rule.

Formal methods (FM) are1 a collection of methodolo-
gies and related tools, geared to the production of soft-
ware employing a mathematical basis. There are a number
of different formal methods each having its own method-
ology and tools, especially a specification language.

We can say that FM are “mathematically based tech-
niques for the specification, development and verifica-
tion of software and hardware systems” (retrieved on
October 15, 2003, http://foldoc.doc.ic.ac.uk/foldoc).

Most FM are based mainly on specifications – for
which they normally have a language to express it. Some-
times, there is also a method to use the language in the
software development process.

The aims of FM can vary according to the different
methodologies, but they all shared a common goal: the
production of software with the utmost quality mainly
based on the production of software that is error free. To
achieve this, the different FM have developed not only a
theory but also different tools to support the formal
process.

 FM can cover all of the steps of the life cycle of a
software system development from requirement specifi-
cation to deployment and maintenance. However, not all
FM have that capacity.

BACKGROUND

Some FM rely on development of a calculus or transfor-
mation, where the engineer starts with an expression and
then following predefined rules applies them to obtain an
equivalent expression. Successive calculations lead to
implementation. On the other hand, there are FM that rely
on the “invent and verify” technique, where the engineer
starts by inventing a new design, which afterwards needs
to be verified as correct. From this verified design, imple-
mentation follows.

There are several styles of formal specification. Some
are mutually compatible while others are not. Table 1
shows a possible classification of the different styles.

Formal languages have formal definitions not only of
their syntax but also of their semantics. Table 2 shows a
possible classification for the different formal semantic
definitions.

Hinchey and Bowen (1995) say that “formal methods
allow us to propose properties of the system and to
demonstrate that they hold. They make it possible for us
to examine system behavior and to convince ourselves
that all possibilities have been anticipated. Finally, they
enable us to prove the conformance of an implementation
with its specification”.

 In NASA’s Langley Research Center site for formal
methods, there is a nice definition and also an explanation
of different degrees of rigour in FM:

“Traditional engineering disciplines rely heavily on
mathematical models and calculation to make judgments

Table 1. Summary of specification language characteristics

Model-oriented. Based on mathematical
domains. For example, numbers, functions,
sets, etc. Concrete.

Property-oriented. Based on axiomatic
definitions. Abstract.

Applicative. Does not allow the use of
variables.

Imperative or State-oriented. Allows the use
of variables.

Static. Do not include provisions for
handling time.

Action. Time can be considered in the
specification. There are several ways of doing
this: considering time as linear or branching,
synchronous, asynchronous, etc.

1206

Formal Methods in Software Engineering

about designs. For example, aeronautical engineers make
extensive use of computational fluid dynamics (CFD) to
calculate and predict how particular airframe designs will
behave in flight. We use the term ‘formal methods’ to refer
to the variety of mathematical modelling techniques that
are applicable to computer system (software and hard-
ware) design. That is, formal methods is the applied
mathematics of computer system engineering, and, when
properly applied, can serve a role in computer system
design analogous to the role CFD serves in aeronautical
design.

Formal methods may [be] used to specify and model
the behavior of a system and to mathematically verify that
the system design and implementation satisfy system
functional and safety properties. These specifications,
models, and verifications may be done using a variety of
techniques and with various degrees of rigour. The fol-
lowing is an imperfect, but useful, taxonomy of the de-
grees of rigour in formal methods:

Level-1:
Formal specification of all or part of the system.
Level-2:
Formal specification at two or more levels of abstrac-

tion and paper and pencil proofs that the detailed speci-
fication implies the more abstract specification.

Level-3:
Formal proofs checked by a mechanical theorem prover.
Level 1 represents the use of mathematical logic or a

specification language that has a formal semantics to
specify the system. This can be done at several levels of
abstraction. For example, one level might enumerate the
required abstract properties of the system, while another
level describes an implementation that is algorithmic in
style.

Level 2 formal methods goes beyond Level 1 by devel-
oping pencil-and-paper proofs that the more concrete
levels logically imply the more abstract-property oriented
levels. This is usually done in the manner illustrated
below.

Level 3 is the most rigourous application of formal
methods. Here one uses a semi-automatic theorem prover
to make sure that all of the proofs are valid. The Level 3
process of convincing a mechanical prover is really a
process of developing an argument for an ultimate skeptic
who must be shown every detail.

Formal methods is not an all-or-nothing approach.
The application of formal methods to only the most critical
portions of a system is a pragmatic and useful strategy.
Although a complete formal verification of a large complex
system is impractical at this time, a great increase in
confidence in the system can be obtained by the use of
formal methods at key locations in the system. (Retrieved
October 31, 2003, http://shemesh.larc.nasa.gov/fm/fm-
what.html)

NASA as well as other government bodies in the USA,
Europe and elsewhere are using FM especially in avionics
and systems where the utmost reliability is needed. Some
examples from NASA are: Small Aircraft Transportation
System (SATS), Formal Analysis of Airborne Information
for Lateral Spacing (AILS), also NASA’s contractors use
FM. For more information on this and other projects, see
http://shemesh.larc.nasa.gov/fm/.

As it is stated previously in NASA’s definition of the
levels of degree of rigour, they are imperfect. Others exist.
Most of the FM included in the following text have as an
integral part not only a language but also a methodology
included, and most of the time this methodology implies
different levels of rigour in its use. For example, RAISE –
that have its own method – presents three degrees of
formality (The RAISE Method Group, 1995):

• formal specification only, where formality is only
applied to the specification procedure.

• formal specification and rigourous development,
where formality is applied to the specification pro-
cedure as above, and rigour to the development
process. This means that the developer starts writ-
ing abstract specifications, goes on developing
more concrete ones and recording the development
relations between them. These relations are then
examined, however they are not justified.

• formal specification and formal development, it is
the extension of the previous degree to do the
justification as well.

Here is a not all-inclusive list of FM:

• ASM (Abstract State Machines) “methodology for
describing simple abstract machines which corre-
spond to algorithms” (Retrieved September 15, 2003,
from http://www.eecs.umich.edu/gasm/).

• B–Method “B is a formal method for the develop-
ment of program code from a specification in the
Abstract Machine Notation” (Retrieved October
23, 2003, from http://www.afm.lsbu.ac.uk/b/).

• CSP (Communicating Sequential Processes) “ pro-
cess algebra originated by C. A. R. Hoare (http://
www.afm.lsbu.ac.uk/csp/).

Table 2. Summary of semantic definitions styles of
specification languages

Operational. Concrete, not well suited for proofs.
Denotational. Abstract, well suited for proofs.
Axiomatic. Very abstract, normally only limited to
conditional equations.

5 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/formal-methods-software-engineering/14412

Related Content

Fault Tolerance for Distributed and Networked Systems
Wenbing Zhao, Louise E. Moserand P. Michael Melliar-Smith (2005). Encyclopedia of Information Science

and Technology, First Edition (pp. 1190-1196).

www.irma-international.org/chapter/fault-tolerance-distributed-networked-systems/14409

Systems Requirements and Prototyping
Vincent C. Yen (2006). Cases on Information Technology Planning, Design and Implementation (pp. 122-

136).

www.irma-international.org/chapter/systems-requirements-prototyping/6365

It's All in the Game: How to Use Simulation-Games for Competitive Intelligence and How to

Support Them by ICT
Jan Achterberghand Dirk Vriens (2008). Information Communication Technologies: Concepts,

Methodologies, Tools, and Applications (pp. 1445-1458).

www.irma-international.org/chapter/all-game-use-simulation-games/22748

The Influence of National and Organisational Culture on Knowledge Sharing in Distributed

Teams
Kerstin Siakas, Elli Georgiadouand Dimitrios Siakas (2020). Information Diffusion Management and

Knowledge Sharing: Breakthroughs in Research and Practice (pp. 533-555).

www.irma-international.org/chapter/the-influence-of-national-and-organisational-culture-on-knowledge-sharing-in-

distributed-teams/242148

ISEkFT: An IBE-Based Searchable Encryption Scheme With k-Keyword Fuzzy Search Trapdoor
 Mamta, Brij B. Guptaand Syed Taqi Ali (2019). Journal of Information Technology Research (pp. 133-153).

www.irma-international.org/article/isekft/234477

http://www.igi-global.com/chapter/formal-methods-software-engineering/14412
http://www.irma-international.org/chapter/fault-tolerance-distributed-networked-systems/14409
http://www.irma-international.org/chapter/systems-requirements-prototyping/6365
http://www.irma-international.org/chapter/all-game-use-simulation-games/22748
http://www.irma-international.org/chapter/the-influence-of-national-and-organisational-culture-on-knowledge-sharing-in-distributed-teams/242148
http://www.irma-international.org/chapter/the-influence-of-national-and-organisational-culture-on-knowledge-sharing-in-distributed-teams/242148
http://www.irma-international.org/article/isekft/234477

