
1212

)
� ������	��

���	�
����-���������
�
���

Liliana Favre
CIC, Argentina

Liliana Martinez
Universidad Nacional del Centro de la Provincia de Buenos Aires, Argentina

Claudia Pereira
Universidad Nacional del Centro de la Provincia de Buenos Aires, Argentina

Copyright © 2005, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

INTRODUCTION

The Unified Modeling Language (UML) has emerged as
a modeling language for specifying, visualizing, con-
structing, and documenting software-intensive systems.
It unifies proven software modeling languages that incor-
porate the object-oriented community’s consensus on
core modeling concepts. It also includes additional ex-
pressiveness to handle problems that previous visual
languages did not fully address (Rumbaugh, Jacobson &
Booch, 1999).

UML emerged in response to a call for a standard
object-oriented design method by the Object Manage-
ment Group (OMG) in 1997. In mid-2001, OMG started
working on a major upgrade to UML, and its evolution will
result in version 2.0 (OMG, 2004).

The UML notation includes diagrams that provide
multiple perspectives of the system under development.
It defines 12 types of diagrams divided into three catego-
ries that represent static application structure, aspects of
dynamic behavior, and ways for organizing and managing
application modules.

The model’s elements are defined in terms of their
abstract syntax, well-formed rules, and precise text (OMG,
2004). These well-formed rules are expressed in the Object
Constraint Language (OCL). Recently, a new version of
OCL, version 2.0, has been formally defined and it has
been adopted by OMG (Warmer & Kleppe, 2003).

UML is used in many ways and different domains for
expressing different types of concepts such as language-
independent software specification, high-level architec-
ture, Web site structure, workflow specification, and
business modeling. It has been applied successfully to
build systems for different types of applications running
on any type and combination of hardware, operating
system, programming language, and network.

Although UML does not prescribe any particular
development process, the OMG presented the Software
Process Engineering Metamodel (SPEM) as a standard in

November 2001 (OMG, 2004). This metamodel is used to
describe a concrete software development process or a
family of related software development processes that
use the UML notation. SPEM has a four-layered architec-
ture of modeling for describing performing process, pro-
cess model, process metamodel, and MetaObject Facility
(MOF). Several processes fit SPEM. The most popular is
Rational Unified Process, developed and marketed by
Rational Software (now a division of IBM). RUP is use-
driven, architecture-centered, iterative, and risk-driven.
Various industry sectors around the world use RUP in
different applications: telecommunications, transporta-
tion, aerospace, defense, manufacturing, and financial
services (Jacobson, Booch & Rumbaugh, 1999; Krutchen,
2000).

The international standardization of UML leads to
improvements in CASE tools, methods, and standard
modeling libraries. In the market, there are about 100 UML
CASE (computer-aided software engineering) tools that
vary widely in functionality, usability, performance, and
platforms (CASE, 2004).

A recent OMG initiative is the Model-Driven Archi-
tecture (MDA), which promotes the creation of abstract
models that are developed independently of a particular
implementation technology and automatically transformed
by tools into models for specific technologies (Kleppe,
Warmer & Bast, 2003).

MDA is emerging as a technical framework to improve
productivity, portability, interoperability, and mainte-
nance. It defines how models expressed in one language
can be transformed into models in other languages. The
MDA process is divided into three main steps:

• Construct a model with a high level of abstraction
that is called Platform-Independent Model (PIM).

• Transform the PIM into one or more Platform-Spe-
cific Models (PSMs), each one suited for different
technologies.

• Transform the PSM to code.

 1213

Forward Engineering of UML Static Models

�
The PIM, PSMs and code describe a system in differ-

ent levels of abstraction. Using MDA, the business is
modeled in Platform-Independent Models, which are trans-
formed into Platform-Specific Models. This is carried out
in an automatic manner.

The success of MDA depends on the definition of
transformation languages and tools that make a signifi-
cant impact on full forward engineering processes and
partial round-trip engineering processes.

BACKGROUND

UML is having a significant impact on the software
development industry. So far, there are about 100 UML
CASE tools that vary widely in functionality, usability,
performance, and platforms (CASE, 2004). Table 1 shows
a taxonomy of the UML CASE tools.

The competing tools can be compared and contrasted
by the following requirements: easy interface, modeling
productivity, implementation productivity, and extensi-
bility. The main stream object-oriented CASE tools can
help with the mechanics of drawing and exporting UML
diagrams, eliminating syntactic errors and consistency
errors between diagrams, and supporting code genera-
tion and reverse engineering.

The current techniques available in the commercial
tools are not sufficient for MDA-based forward engineer-
ing. A source of problems in the code generation process
is that, on the one hand, the UML models contain infor-
mation that cannot be expressed in object-oriented lan-
guages while, on the other hand, the object-oriented
languages express implementation characteristics that
have no counterpart in the UML models. For instance,
languages like Java, C++, and Eiffel do not allow explicit
associations. These can be simulated by pointers and
references, but then the structure of the system is not
apparent. This often leads to problems during forward
engineering between the specification and code.

Moreover, the existing CASE tools do not exploit all
the information contained in the UML models. For in-
stance, cardinality and constraints of associations and
preconditions, postconditions, and class invariants in

OCL are only translated as annotations. It is the designer’s
responsibility to make good use of this information, either
selecting an appropriate implementation from a limited
repertoire or implementing the association by himself.

UML CASE tools provide limited facilities for
refactoring source code through an explicit selection
made for the designer. However, it will be worth thinking
about refactoring at the design level. The advantage of
refactoring at the UML level is that the transformations do
not have to be tied to the syntax of a programming
language. This is relevant since UML is designed to serve
as a basis for code generation with the MDA paradigm
(Sunyé, Pollet, Le Traon & Jézéquel, 2001).

Many UML CASE tools support reverse engineering.
However, they only use more basic notational features
with a direct code representation and produce very large
diagrams. Reverse engineering processes are facilitated
by inserting annotations in the generated code. These
annotations are the link between the model elements and
the language. As such, they should be kept intact and not
be changed. It is the programmer’s responsibility to know
what he or she can modify and what he or she cannot
modify.

Techniques that currently exist in UML CASE tools
provide little support for validating models in the design
stages. Reasoning about models of systems is well sup-
ported by automated theorem provers and model check-
ers, however these tools are not integrated into CASE
tools environments. Another problem is that as soon as
the requirements specifications are handed down, the
system architecture begins to deviate from specifications
(Kollmann & Gogolla, 2002).

To solve these problems a lot of work has been carried
out dealing with the semantics for UML models, advanced
metamodeling techniques, and rigorous processes that fit
MDA.

The Precise UML Group, pUML, was created in 1997
with the goal of giving precision to UML (Evans, France,
Lano & Rumpe, 1998). It is difficult to compare the existing
formalizations and to see how to integrate them in order
to define a standard semantics since they specify differ-
ent UML subsets and they are based on different formal-
isms (Ahrendt et al., 2002; McUmber & Cheng, 2001;

Table 1. UML CASE tools

Main Stream Object-Oriented
CASE Tools

Rational Rose, Argo/UML, Poseidon,
Together, GDPro, Stp/UML,
MagicDraw

Real-Time/Embedded Tools Tau UML
Rhapsody
Rational Rose Real Time

Basic Drawing Tools Visio

4 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/forward-engineering-uml-static-models/14413

Related Content

Quality Assurance Issues for Online Universities
Floriana Grassoand Paul Leng (2009). Encyclopedia of Information Science and Technology, Second

Edition (pp. 3181-3185).

www.irma-international.org/chapter/quality-assurance-issues-online-universities/14046

Analyzing the Influence of Web Site Design Parameters on Web Site Usability
Monideepa Tarafdarand Jie ("Jennifer") Zhang (2005). Information Resources Management Journal (pp.

62-80).

www.irma-international.org/article/analyzing-influence-web-site-design/1281

Governing Information Technology (IT) and Security Vulnerabilities: Empirical Study Applied on

the Jordanian Industrial Companies
Asim El Sheikhand Husam A. Abu Khadra (2009). Journal of Information Technology Research (pp. 70-85).

www.irma-international.org/article/governing-information-technology-security-vulnerabilities/3714

Exploring E-Governance of Faculty Evaluation System: Using a Total Interpretive Structural

Modeling Approach
Naim Shaikh, Sneha Kumariand Kishori Kasat (2018). Journal of Cases on Information Technology (pp. 36-

47).

www.irma-international.org/article/exploring-e-governance-of-faculty-evaluation-system/207365

Business Reengineering at a Large Government Agency
Nina McGarryand Tom Beckman (1997). Cases on Information Technology Management In Modern

Organizations (pp. 250-274).

www.irma-international.org/chapter/business-reengineering-large-government-agency/33472

http://www.igi-global.com/chapter/forward-engineering-uml-static-models/14413
http://www.irma-international.org/chapter/quality-assurance-issues-online-universities/14046
http://www.irma-international.org/article/analyzing-influence-web-site-design/1281
http://www.irma-international.org/article/governing-information-technology-security-vulnerabilities/3714
http://www.irma-international.org/article/exploring-e-governance-of-faculty-evaluation-system/207365
http://www.irma-international.org/chapter/business-reengineering-large-government-agency/33472

