
 1367

�
������������
$�������	
*!��
���������

Lei Dang
University of Manchester, UK

Suzanne M. Embury
University of Manchester, UK

Copyright © 2005, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

INTRODUCTION

In recent years, the term agile organisation has been
coined to denote an organisation which is able to change
its working practices quickly in order to adapt to changing
external pressures or to take advantage of new market
opportunities that may arise (Perez-Bustamante, 1999). A
key element of such agility is fast and reliable decision
making; that is, the ability to determine what the new
organisational behaviour shall be, as well as how the
changes to it should be affected. In general, an
organisation will be faced with several possible strategies
for change, each of which has competing strengths and
weaknesses. Management must then evaluate and com-
pare each of these to determine which has the best
forecasted outcome. This process is often referred to as
“what if?” analysis (WiA), since it tries to answer the
question: what will the outcome be if we adopt change X?
(Codd, Codd, & Salley, 1993)

BACKGROUND

Perhaps the most familiar WiA tool is the spreadsheet, in
which the user can enter different values for the param-
eters of a mathematical model and observe the changing
results. For example, a manager might experiment with
different discount rates on forecasted sales, to see how
profit levels are affected. The applicability of this tech-
nique, however, is limited to situations that can be accu-
rately characterised by a simple set of mathematical equa-
tions. A far more common context for such decision
making is provided by a company database (or data
warehouse), which records historical information about
the performance of the organisation.

In order to perform WiA in this context, we would like
to be able to update the database, to reflect the proposed
changes in organisational behaviour, and then to query it,
in order to determine the properties of the new state. Since
we obviously cannot risk modifying the live data itself in
this way, we need to find alternative methods of making
these hypothetical changes to data and querying their

composite effect. If the proposed change is sufficiently
simple, for example, both the change and the query can be
made inside a transaction that is aborted once the query
result has been obtained. This will preserve the integrity
of the live data, but it can have a performance impact on
other business processing and it does not allow easy
comparison of different scenarios.

An alternative approach that is commonly adopted is
to make a copy of the data involved in the WiA scenario
and to make the necessary changes to that, instead of to
the live data. This is a much better solution if the change
or the queries are large/complex, and it also allows a more
ad hoc style of analysis, in which changes and queries are
interleaved, and determined based on the results of the
previous set of queries. If data sets are large, however, or
if many different strategies are to be compared, then the
disk space required can make this approach impractical.
The effect of the data extraction on the performance and
availability of the live database must also be considered.

Researchers have therefore considered the possibil-
ity of embedding facilities for this form of WiA within the
DBMS itself, to provide the capability to perform hypo-
thetical reasoning over the contents of the database
without impacting the integrity or performance of the
database as a whole. Such facilities must support both
hypothetical updates (HUs), which create a pseudostate
(called a hypothetical state, or HS) based upon the real
database state but modified according to the updates
requested, and hypothetical queries, which derive prop-
erties from hypothetical states.

A range of possibilities exist for implementing such
hypothetical reasoning facilities, depending on how the
updates and queries are specified, and to what degree the
hypothetical states are materialised or not. In general, the
proposals made in the literature so far can be divided into
two broad categories: those which support extensional
representations of HUs and those which support inten-
sional representations of HUs. The former approach is
based around the notion of a hypothetical relation (HR),
while the second is focussed on the provision of hypo-
thetical querying facilities. In the remainder of this article,
we will present an overview of the principal contributions

1368

Hypothetical Reasoning Over Databases

in both categories, followed by a brief discussion of some
additional approaches that might be investigated in the
future.

HYPOTHETICAL RELATIONS

The earliest proposal for hypothetical reasoning facilities
for databases was based upon the notion of a HR
(Stonebraker & Keller, 1980). An HR appears to the query
system to be a normal relation, but its contents are in fact
defined in terms of the contents of another relation (typi-
cally an actual stored relation), with some user-specified
additions and deletions. The HR itself does not store data,
but instead contains the additions and deletions that
have been hypothetically made to the underlying data-
base. Thus, if Add

R
 is the set of tuples that are to be

hypothetically added to a relation R, and Del
R
 is the set of

tuples that are to be hypothetically deleted from R, then
the tuples present in the new hypothetical version of R are
exactly those given by the query:

(R UNION Add
R
) DIFFERENCE Del

R

Further queries can be posed against the HR (or a
mixture of as many hypothetical and actual relations as are
required) in order to understand the ramifications of a
particular change in working practices.

Various methods of implementing HRs have been
proposed, each with different performance and disk space
characteristics. However, the basic concept is to store the
details of the HUs in a special auxiliary relation (or rela-
tions), for use later in reconstructing the HR itself. In the
earliest proposals (Stonebraker & Keller, 1980), a special
relation called a differential file (DF) is created whenever
a new HR is requested by the user (i.e. by making a HU to
another relation). The columns of the DF are exactly the
same as those of the relation that is being hypothetically
updated, with the addition of a special TupleID column,
which is used to match deleted tuples in the DF with their
counterparts in the underlying relation, and a column
indicating whether the tuple is an addition to or a deletion
from the main relation.

The simplest method of querying an HR represented
as a DF is to use a query rewriting approach (Stonebraker,
1981), in which any query involving HRs is transformed
into an equivalent query that references only actual
relations and DFs. This is done by replacing any refer-
ences to an HR with a query similar to that given above to
describe the contents of an HR. However, this approach
(in conjunction with this simple DF design) has several
disadvantages. The DF tracks all the updates made to a
particular HR, and it may therefore be the case that a tuple
in the underlying (actual) relation may appear several

times in the DF, if (for example) it has been inserted and
deleted many times. This means that the DF can grow
much larger than the underlying relation itself, if HUs are
numerous and frequent. A second disadvantage is that
tuples which are deleted and then re-inserted into the
same HR will not be picked up by the query mechanism,
because all hypothetical deletions are always enacted
after all hypothetical insertions. A later revision of the
algorithm was proposed, which uses timestamps on tuples
in the DF in order to allow the most recent changes to be
visible in the HR (Woodfill & Stonebraker, 1983).

Later, these ideas were developed and extended to
produce a more sophisticated form of HR, called an Inde-
pendently Updated View (IUV) (Ramirez, Kulkarni, &
Moser, 1991). IUVs are virtual relations defined over a
conventional relational view (Kulkarni & Ramirez, 1997).
As with HRs, HUs made to an IUV will not affect its
parental views (i.e. the views or relations from which the
IUV is built). The storage mechanism for HUs to IUVs is
similar to the DF approach, except that IUVs can be
materialised for higher querying performance, or stored in
a separate auxiliary relation (called the differential table,
or DT) for greater flexibility and speed of update. A further
difference is that only accumulated net effects of updates
are stored in the DT, so that IUVs require much less
storage than HRs in the case of frequent repeated up-
dates.

An additional problem which is present in HRs but
resolved in IUVs is that of overlapping updates. These
occur when the parent relations of an IUV (or HR) are
updated normally (i.e. not through the hypothetical up-
date facility). For example, suppose we have hypotheti-
cally added a new employee called Fred to a Workers
relation, and after this the relation is actually updated to
contain an employee called Fred. Which of the new Fred
tuples should the HR contain? In general, the answer to
this question will be application dependent. In some
cases, we will wish to give priority to the real updates,
while in other cases we will wish to block out any further
changes and concentrate only on the HUs. In order to
allow this, the designers of the IUV approach provide two
options for hypothetical querying, an IUV-prioritised
approach, which ignores changes to the parental views,
and a Parental-View-prioritised approach, which forces a
re-evaluation of the IUV in the light of the updates to the
parental view.

HYPOTHETICAL QUERIES

The HR approach concentrates on the problems of repre-
senting and processing hypothetical updates in the form
of sets of tuples to be added or deleted. However, many
forms of WiA are more conveniently expressed using an

3 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/hypothetical-reasoning-over-databases/14440

Related Content

A Systematic Comparison of Machine Learning and NLP Techniques to Unveil Propaganda in

Social Media
Deptii D. Chaudhariand Ambika V. Pawar (2022). Journal of Information Technology Research (pp. 1-14).

www.irma-international.org/article/a-systematic-comparison-of-machine-learning-and-nlp-techniques-to-unveil-

propaganda-in-social-media/299384

What Builds System Troubleshooter Trust the Best: Experiential or Non-Experiential Factors?
D. Harrison McKnightand Norman L. Chervany (2005). Information Resources Management Journal (pp.

32-49).

www.irma-international.org/article/builds-system-troubleshooter-trust-best/1275

Life Cycle of ERP Systems
Cesar Alexandre de Souzaand Ronaldo Zwicker (2005). Encyclopedia of Information Science and

Technology, First Edition (pp. 1844-1849).

www.irma-international.org/chapter/life-cycle-erp-systems/14524

Derivation of an Agile Method Construction Set to Optimize the Software Development Process
Jerome Vogeland Rainer Telesko (2020). Journal of Cases on Information Technology (pp. 19-34).

www.irma-international.org/article/derivation-of-an-agile-method-construction-set-to-optimize-the-software-development-

process/256595

Future Sustainability of the Florida Health Information Exchange
Alice M. Noblinand Kendall Cortelyou-Ward (2013). Journal of Cases on Information Technology (pp. 38-

46).

www.irma-international.org/article/future-sustainability-of-the-florida-health-information-exchange/100808

http://www.igi-global.com/chapter/hypothetical-reasoning-over-databases/14440
http://www.irma-international.org/article/a-systematic-comparison-of-machine-learning-and-nlp-techniques-to-unveil-propaganda-in-social-media/299384
http://www.irma-international.org/article/a-systematic-comparison-of-machine-learning-and-nlp-techniques-to-unveil-propaganda-in-social-media/299384
http://www.irma-international.org/article/builds-system-troubleshooter-trust-best/1275
http://www.irma-international.org/chapter/life-cycle-erp-systems/14524
http://www.irma-international.org/article/derivation-of-an-agile-method-construction-set-to-optimize-the-software-development-process/256595
http://www.irma-international.org/article/derivation-of-an-agile-method-construction-set-to-optimize-the-software-development-process/256595
http://www.irma-international.org/article/future-sustainability-of-the-florida-health-information-exchange/100808

