
 1471

�
�����������
��
����	
��
#�)
��

*$�

Terry Halpin
 Northface University, USA

Copyright © 2005, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

INTRODUCTION

The Unified Modeling Language (UML) was adopted by
the Object Management Group (OMG) in 1997 as a lan-
guage for object-oriented (OO) analysis and design. After
several minor revisions, a major overhaul resulted in UML
version 2.0 (OMG, 2003), and the language is still being
refined. Although suitable for object-oriented code de-
sign, UML is less suitable for information analysis, since
it provides only weak support for the kinds of business
rules found in data-intensive applications. Moreover,
UML’s graphical language does not lend itself readily to
verbalization and multiple instantiation for validating
data models with domain experts.

These problems can be remedied by using a fact-
oriented approach for information analysis, where com-
munication takes place in simple sentences, each sen-
tence type can easily be populated with multiple in-
stances, and attributes are avoided in the base model. At
design time, a fact-oriented model can be used to derive
a UML class model or a logical database model. Object
Role Modeling (ORM), the main exemplar of the fact-
oriented approach, originated in Europe in the mid-1970s
(Falkenberg, 1976), and has been extensively revised and
extended since, along with commercial tool support (e.g.,
Halpin, Evans, Hallock & MacLean, 2003).

This article provides a concise comparison of the data
modeling features within UML and ORM. The next section
provides background on both approaches. The following
section summarizes the main structural differences be-
tween the two approaches, and outlines some benefits of
ORM’s fact-oriented approach. The following section
uses a simple example to highlight the need to supplement
UML’s class modeling notation with additional con-
straints, especially those underpinning natural identifica-
tion schemes. Future trends are then briefly outlined, and
the conclusion motivates the use of both approaches in
concert to provide a richer data modeling experience, and
provides references for further reading.

BACKGROUND

Detailed treatments of UML are provided in Booch,
Rumbaugh, and Jacobson (1999); Jacobson, Booch, and
Rumbaugh (1999); and Rumbaugh, Jacobson, and Booch

(1999). The UML notation includes hundreds of symbols,
from which various diagrams may be constructed to model
different perspectives of an application (e.g., use case
diagrams, class diagrams, object diagrams, statecharts,
activity diagrams, sequence diagrams, collaboration dia-
grams, component diagrams, and deployment diagrams).
This article focuses on data modeling, considering only
the static structure (class and object) diagrams. UML dia-
grams may be supplemented by textual constraints expressed
in the Object Constraint Language (OCL). For a detailed
coverage of OCL 2.0, see Warmer and Kleppe (2003).

ORM pictures the world simply in terms of objects
(entities or values) that play roles (parts in relationships).
For example, you are now playing the role of reading, and
this article is playing the role of being read. Overviews of
ORM may be found in Halpin (1998a, 1998b) and a detailed
treatment in Halpin (2001a). For advanced treatment of
specific ORM topics, see Bloesch and Halpin (1997), De
Troyer and Meersman (1995), Halpin (2000, 2001b, 2002a,
2002b, 2004), Halpin and Bloesch (1999), Halpin and Proper
(1995), and ter Hofstede, Proper, and van der Weide (1993).

DATA STRUCTURES

Table 1 summarizes the main correspondences between
high-level data constructs in ORM and UML. An
uncommented “—” indicates no predefined support for
the corresponding concept, and “†” indicates incomplete
support. This comparison indicates that ORM’s built-in
symbols provide greater expressive power for capturing
conceptual constraints in graphical data models.

A class in UML corresponds to an object type in ORM.
ORM classifies objects into entities (UML objects) and
values (UML data values—constants such as character
strings or numbers). A fact type (relationship type) in
ORM is called an association in UML (e.g., Employee
works for Company). The main structural difference be-
tween ORM and UML is that ORM avoids attributes in its
base models. Implicitly, attributes may be associated with
roles in a relationship. For example, Employee.birthdate is
modeled in ORM as the second role of the fact type:
Employee was born on Date.

The main advantages of attribute-free models are that
all facts and rules can be naturally verbalized as sen-
tences, all data structures can be easily populated with
multiple instances, models and queries are more stable

1472

Information Modeling in UML and ORM

since they are immune to changes that reshape attributes
as associations (e.g., if we later wish to record the histori-
cal origin of a family name, a family name attribute needs
to be remodeled using a relationship), null values are
avoided, connectedness via semantic domains is clari-
fied, and the metamodel is simplified. The price paid is that
attribute-free diagrams usually consume more space. This
disadvantage can be offset by deriving an attribute-based
view (e.g., a UML class or relation scheme) when desired
(tools can automate this).

ORM allows relationships of any arity (number of
roles). A relationship may have many readings starting at
any role to naturally verbalize constraints and navigation
paths in any direction. Fact type readings use mixfix
notation to allow object terms at any position in the
sentence, allowing natural verbalization in any language.
Role names are also allowed. ORM includes procedures
for creating and transforming models (e.g., verbalization
of relevant information examples—these “data use cases”
are in the spirit of UML use cases, except the focus is on
the underlying data).

In an ORM diagram, roles appear as boxes, connected
by a line to their object type. A predicate appears as a
named, ordered set of role boxes. Since these boxes are set
out in a line, fact types may be conveniently populated
with tables holding multiple fact instances, one column for
each role. This allows all fact types and constraints to be
validated by verbalization as well as sample populations.

While supporting binary and longer associations,
UML uses Boolean attributes instead of unary relation-

ships. For example, the fact instance expressed in ORM as
“Person ‘Sam Spade’ smokes” would typically be ren-
dered awkwardly in UML as “SamSpade: Person.isSmoker
= true.” To be business friendly, UML should support
unary fact types directly (e.g., Room has a window,
Person smokes, etc.).

Each UML association has at most one name. Verbal-
ization into sentences is practical only for infix binaries.
Since roles for ternaries and higher arity associations are
not on the same line, directional verbalization and multiple
instantiation for population checks are ruled out. UML
does provide object diagrams for instantiation, but these
are convenient only for populating with one or two in-
stances.

Both UML and ORM allow associations to be objec-
tified as first class object types, called association classes
in UML and objectified (or nested) associations in ORM.
UML requires the same name to be used for the associa-
tion and the association class, impeding natural verbaliza-
tion, in contrast to ORM nesting based on linguistic
nominalization (a verb phrase is objectified by a noun
phrase).

CONSTRAINTS AND
IDENTIFICATION SCHEMES

Business people communicate about things using value-
based identification schemes, not memory addresses or

Table 1. Comparison of the main data constructs in ORM and UML

ORM UML

Data structures:
 object type: entity type;
 value type
 — { use fact type }
 unary fact type
 2+-ary fact type
 objectified association (nesting)
 co-reference

Predefined Constraints:
 internal uniqueness
 external uniqueness
 simple mandatory role
 disjunctive mandatory role
 frequency: internal; external
 value
 subset and equality
 exclusion
 subtype link and definition
 ring constraints
 join constraints
 object cardinality

— { use uniqueness and ring } †
—

User-defined textual constraints

Data structures:
 object class
 data type
 attribute
 — { use Boolean attribute }
 2+-ary association
 association class
 qualified association †

Predefined Constraints:
 multiplicity of ..1 †
 — { use qualified association } †
 multiplicity of 1+.. †
 —
 multiplicity †; —
 enumeration, and textual
 subset †
 xor †
 subclass, discriminator etc. †
 —
 —
 class multiplicity
 aggregation/composition
 initial value, changeability

User-defined textual constraints
 † = incomplete coverage of corresponding concept

3 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/information-modeling-uml-orm/14457

Related Content

Intentional Decentralization and Instinctive Centralization: A Revelatory Case Study of the

Ideographic Organization of IT
Johan Magnusson (2013). Information Resources Management Journal (pp. 1-17).

www.irma-international.org/article/intentional-decentralization-and-instinctive-centralization/99710

A Collaborative Approach for Improvisation and Refinement of Requirement Prioritization

Process
Ankita Guptaand Chetna Gupta (2018). Journal of Information Technology Research (pp. 128-149).

www.irma-international.org/article/a-collaborative-approach-for-improvisation-and-refinement-of-requirement-

prioritization-process/203012

Intelligent Agents and Their Applications
Alexa Heucke, Georg Petersand Roger Tagg (2009). Encyclopedia of Information Science and Technology,

Second Edition (pp. 2132-2136).

www.irma-international.org/chapter/intelligent-agents-their-applications/13873

Supporting Quality of Service for Internet Multimedia Applications
Yew-Hock Ang (2009). Encyclopedia of Information Science and Technology, Second Edition (pp. 3622-

3628).

www.irma-international.org/chapter/supporting-quality-service-internet-multimedia/14115

Information Systems Strategy Formation Embedded into a Continuous Organizational Learning

Process
Timo Auerand Tapio Reponen (1997). Information Resources Management Journal (pp. 32-43).

www.irma-international.org/article/information-systems-strategy-formation-embedded/51035

http://www.igi-global.com/chapter/information-modeling-uml-orm/14457
http://www.irma-international.org/article/intentional-decentralization-and-instinctive-centralization/99710
http://www.irma-international.org/article/a-collaborative-approach-for-improvisation-and-refinement-of-requirement-prioritization-process/203012
http://www.irma-international.org/article/a-collaborative-approach-for-improvisation-and-refinement-of-requirement-prioritization-process/203012
http://www.irma-international.org/chapter/intelligent-agents-their-applications/13873
http://www.irma-international.org/chapter/supporting-quality-service-internet-multimedia/14115
http://www.irma-international.org/article/information-systems-strategy-formation-embedded/51035

