1555

Integrating Requirements Engineering
Techniques and Formal Methods

MariaVirginiaMauco

Universidad Nacional del Centro de la Pcia. de Buenos Aires, Argentina

Daniel Riesco
Universidad Nacional de San Luis, Argentina

INTRODUCTION

Formal methodshel pto devel op morereliableand secure
software systems, and they are increasingly being ac-
cepted by industry. The RAISE! Method (George et al .,
1995), for example, isintended for use on real develop-
ments, not just toy examples. Thismethodincludesalarge
number of techniques and strategies for formal develop-
ment and proofs, as well as a formal specification lan-
guage, the RAI SE Specification Language (RSL) (George
etal., 1992), and aset of tools (Georgeet al., 2001).

Formal specifications may be used throughout the
softwarelifecycle, and they may be manipul ated by auto-
mated toolsfor awide variety of purposes such as model
checking, deductiveverification, formal reuse of compo-
nents, and refinement from specification to implementa-
tion (van Lamsweerde, 2000a). However, they are not
easily accessibleto peoplewho arenot familiar or comfort-
able with formal notations. Thisis particularly inconve-
nient during thefirst stages of system devel opment, when
interaction with the stakeholders is very important. In
common practice, the analysis of a problem often starts
frominterviewswith the stakehol ders, and this source of
information is heavily based on natural language.

System requirements must be described well enough
so that an agreement can be reached between the stake-
holders and the system developers on what the system
should and should not do. A major challenge with thisis
that the stakehol ders must be ableto read and understand
the results of requirements capture. To meet this chal-
lenge we must use the language of the stakeholders to
describe these results (Jacobson, Booch & Rumbaugh,
1999). Stakeholder-oriented requirements engineering
techniqueshel ptoimprove communication among stake-
holders and software engineers asthey ease the devel op-
ment of afirst specification of a system which could be
validated with stakehol dersand which could bethe basis
for aformal development. Thus, we could takeadvantage
of both techniques to improve the final product.

Among thetechniquesproposedtoformalizerequire-
ments elicitation and modeling, Leite’'s Requirements
Baselinecan bementioned (Leiteetal., 1997). Two of its

modelsarethe L anguage Extended L exicon (LEL) andthe
Scenario Model. LEL and scenarios provide a detailed
description of an application domain, and as they are
writteninnatural language, they arecloser to stakeholder’ s
world. However, animportant pointishow tofruitfully use
all this information during the software development
process.

To address the problems stated above, we have been
working in the integration of stakeholder-oriented re-
guirements engineering techniqueswith formal methods
in order to take advantage of the benefits of both of them.
In particular, our work is focused on the Requirements
Baseline and the RAISE Method. We have proposed a
three-step process to help in the definition of an initial
formal specification in RSL of a domain starting from
natural language models such as LEL and scenarios.
These steps are the derivation of types, the derivation of
functions, and the definition of modules. We have devel-
oped a preliminary set of heuristics that show how to
derive types and functions, and how to structurethemin
modules by using LEL and scenarios information. We
have also proposed to represent the hierarchy of RSL
modul es obtained using alayered architecture. Thislay-
ered architecture is then the basis to start applying the
steps of the RAISE Method.

BACKGROUND

In spite of the wide variety of formal specification lan-
guages and modeling languages, such as the Unified
Modeling Language (UML) (Jacobsonet al., 1999), natu-
ral language is still the method chosen for describing
software system requirements (Jacobson et al., 1999;
Sommerville& Sawyer, 1998; van Lamsweerde, 2000a).
However, the syntax and semantics of natural language,
evenwithitsflexibility and expressiveness power, isnot
formal enoughto beused directly for prototyping, imple-
mentation, or verification of asystem. Thus, therequire-
ments document written in natural language has to be
reinterpreted by software engineers into a more formal
design on the way to a complete implementation. Some

Copyright © 2005, Idea Group Inc., distributing in print or electronic forms without written permission of I1GI is prohibited.




Integrating Requirements Engineering Techniques and Formal Methods

recent works (Lee, 2001; Lee & Bryant, 2002; Moreno
Capuchino, Juristo & Van de Riet, 2000; Nuseibeh &
Easterbrook, 2000, van Lamsweerde, 2000b) present dif-
ferent strategies for mapping requirements to, for ex-
ampl e, object-oriented model s or formal specifications.

Whenusingthe RAISE Method, writing theinitial RSL
specification isthe most critical task because this speci-
ficationmust capturetherequirementsinaformal, precise
way (George, 2002). RSL specificationsof many domains
have been developed by starting from informal descrip-
tions containing synopsis (introductory text that informs
what thedomainisabout), narrative (systematic descrip-
tion of all the phenomenaof the domain), and terminol ogy
(list of concise and informal definitions, alphabetically
ordered). Othersalsoincludealist of events. They can be
found in UNU/I1ST s Web site (www.iist.unu.edu). The
gap between these kind of descriptions and the corre-
sponding RSL formal specificationislarge, and thus, for
example, it isdifficult and not always possible to check
whether theformal specification model swhat theinformal
description does and vice versa.

Aswehad some experiencein using the Requirements
Baseline, and we knew it had been used asthe basisto an
object conceptual model (L eonardi, 2001), weconsider the
possibility of using it asthe first description of adomain
from which aformal specificationin RSL could be later
derived.

THREE-STEP PROCESS TO
DERIVE A FORMAL SPECIFICATION

As an attempt to reduce the gap between stakeholders
and the formal methodsworld, we propose atechniqueto
deriveaninitial formal specificationin RSL fromrequire-
ments models, such as LEL and scenarios that are closer
to stakeholders' language. The derivation of the specifi-
cation is structured in three steps: Derivation of Types,
Derivation of Functions, and Definition of Modules. They
are not strictly sequential; they can overlap or be carried
outincycles. For example, function definitionscanindi-
cate which type structures are preferable.

Derivation of Types

This step produces a set of abstract as well as concrete
types that model the relevant terms in the domain. We
perform the derivation of the typesintwo steps. First we
identify thetypes, and then we decide how to model them.
Thisway of definingtypesfollowsone of thekey notions
of theRAISE Method (Georgeet al ., 1995): the step-wise
development.

Themaingoal of theidentification stepistodetermine
an initial set of types that are necessary to model the

1556

different entities present in the analyzed domain. This
initial setwill becompleted, or even modified, duringthe
remaining steps of the specification derivation. For ex-
ample, during the Definition of Modules Step, it may be
necessary to define a type to reflect the domain state.
Also, when defining functions, it may be useful to define
some new types to be used as result types of functions.
The LEL isthe source of information during this step, as
L EL subjectsand some objectsrepresent the main compo-
nentsor entities of theanalyzed domain. Ingeneral, LEL
subjects and objects will correspond to typesin the RSL
specification. Insomecases, LEL verbsmay alsogiverise
tothedefinition of moretypes, aswhen they represent an
activity that hasits own data to save. However, in order
to definejust therelevant types, we have suggested some
heuristicsthat can befoundinMauco, Riesco, and George
(2001a).

Onceapreliminary set of typesisdefined andin order
to remove under-specification, we propose to return to
the information contained in the LEL and the Scenario
Model. In particular, the analysis of the notion, and
sometimes the behavioral response of each symbol that
motivated the definition of an abstract type, can help to
decideif thetypecould bedevel opedinto amore concrete
type. All the developments we suggest satisfy the imple-
mentationrelation. InMauco et al. (2001a), some heuris-
ticsto assist in this task can be found. During this step,
it might be necessary to introduce some type definitions
that do not correspond to any entry in the LEL. They
appear, in general, when modeling components of some
other type. Symbols without an entry in the LEL may
represent an omission or asymbol considered outsidethe
application domain language. When an omission is de-
tected, it isnecessary to returnto the LEL to add the new
definition, and updatethe Scenario M odel to maintainthe
consistency between its vocabulary and the LEL itself.

Definition of Modules

This step helps to organize in modules all the types
produced by the Derivation of Types Step in order to
obtain a more legible and maintainable specification.
These moduleswould belater completed with the defini-
tion of functionsin the next step, and probably they will
be completed with more type definitions.

A summary of the heuristics we propose to definefor
the modules can be found in Mauco et al., (2001b). In
defining these heuristics, we closely followed the fea-
tures RSL modules should have according to the RAISE
Method (Georgeet al., 1995; George, 2002). For exampl e,
each module should have only one type of interest,
defining the appropriate functionsto create, modify, and
observe values of thetype, and the collection of modules
should be, as far as possible, hierarchically structured.



3 more pages are available in the full version of this document, which may be
purchased using the "Add to Cart" button on the publisher's webpage:
www.igi-global.com/chapter/integrating-requirements-engineering-

techniques-formal/14473

Related Content

Scalability Property in Solving the Density Classification Task

Laboudi Zakaria, Chikhi Salimand Lakhdari Saliha (2017). Journal of Information Technology Research (pp.
60-76).

www.irma-international.org/article/scalability-property-in-solving-the-density-classification-task/178574

A Classification of Approaches to Web-Enhanced Learning

Jane E. Klobasand Stefano Renzi (2009). Encyclopedia of Information Science and Technology, Second
Edition (pp. 538-544).
www.irma-international.org/chapter/classification-approaches-web-enhanced-learning/13626

A Socio-Technical Heuristic for Analysis of IT Investments: Results from Two Case Studies
Grover S. Kearns (2006). Advanced Topics in Information Resources Management, Volume 5 (pp. 92-121).

www.irma-international.org/chapter/socio-technical-heuristic-analysis-investments/4644

A Texture Segmentation Algorithm and Its Application to Target Recognition

QingE Wuand Weidong Yang (2017). Examining Information Retrieval and Image Processing Paradigms in
Multidisciplinary Contexts (pp. 51-72).
www.irma-international.org/chapter/a-texture-segmentation-algorithm-and-its-application-to-target-recognition/177695

A Process Approach for Selecting ERP Software: The Case of Omega Airlines
Jacques Verville (2003). Annals of Cases on Information Technology: Volume 5 (pp. 26-44).
www.irma-international.org/article/process-approach-selecting-erp-software/44531



http://www.igi-global.com/chapter/integrating-requirements-engineering-techniques-formal/14473
http://www.igi-global.com/chapter/integrating-requirements-engineering-techniques-formal/14473
http://www.irma-international.org/article/scalability-property-in-solving-the-density-classification-task/178574
http://www.irma-international.org/chapter/classification-approaches-web-enhanced-learning/13626
http://www.irma-international.org/chapter/socio-technical-heuristic-analysis-investments/4644
http://www.irma-international.org/chapter/a-texture-segmentation-algorithm-and-its-application-to-target-recognition/177695
http://www.irma-international.org/article/process-approach-selecting-erp-software/44531

