
 1663

�
���������	
2�!�
��
���
��
������’�
����������

Wendy Lucas
Bentley College, USA

Copyright © 2005, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

INTRODUCTION

The object-oriented programming paradigm has gained
popularity in both industry and academia, and Java is
becoming the language of choice. Yet, it can be a difficult
language to learn, with many hurdles for novice program-
mers. This overview describes how Java was successfully
introduced as the first programming language in an infor-
mation technology master’s program at Bentley College.
Careful consideration was given to a variety of factors,
including when to introduce object-oriented concepts,
which integrated development environment to use, and
how to support students with minimal prior programming
experience. The impact of these choices on the learning
experience and the factors that led to the successful
implementation of Java as a first programming language
are described.

BACKGROUND

The Java programming language was developed at Sun
Microsystems in 1991 for use in consumer electronics
devices, such as television sets and VCRs. It, therefore,
needed to be both small and portable. While the language
has grown in size with each new release, the Java Virtual
Machine continues to ensure implementation-indepen-
dent code that can be run under a variety of operating
systems. Coupling this capability with the ability to run
Java applets from Web pages was what first attracted
interest in the language when it was initially released in
1995. Since that time, Java has developed into a general-
purpose language used throughout enterprise-wide dis-
tributed applications.

While Java has gained acceptance and widespread
use in industry, it has also made inroads into academia. It
is now taught extensively in intermediate programming
courses and has been widely adopted as the first program-
ming language. Its inclusion in introductory courses,
however, has been problematic due to inherent complexi-
ties in the language. In comparing Java to C++, for ex-
ample, it soon becomes clear that many of Java’s “simpli-
fications” are not correlated with a simpler learning expe-
rience for beginning programmers. Although Java does
not support multiple inheritance, a difficult concept for

students learning C++, it does allow classes to extend
multiple interfaces, which is similar in purpose and com-
plexity. Java does not permit pointer arithmetic and hides
pointers from the user, but beginning programmers must
understand the concept of references in order to work
with objects and arrays. Other problems include: the
library documentation is often ambiguous; the encapsu-
lation model is actually more complicated than that of
C++; and a large number of methods in the class library
throw exceptions that must be caught or passed to a caller.
Benander, Benander, and Lin (2003) found that, while
professionally employed programmers understand the
importance of catching exceptions, many students fail to
appreciate Java’s exception handling approach. Even
capturing keyboard input from the user is difficult, as Java
does not provide basic support for such input in non-GUI
programs. As a result, authors typically provide their own
methods, requiring students to develop a basic under-
standing of packages, classes, and methods at a very
early stage (see, for example, Lewis & Loftus, 2003;
Savitch, 2004). One way in which Java is truly simpler than
C++ is in providing automatic memory management in the
form of a garbage collector.

Given the difficulties new programmers must over-
come in learning Java, some educators, such as Collins
(2002), have reached the conclusion that it is not reason-
able to expose students to this language in their first
programming course. Others have sought means for shield-
ing students from some of Java’s complexities. Roberts
(2001) describes the use of the MiniJava environment,
which contains a subset of the standard Java release
along with simplifying enhancements that make it easier
to use. Another development environment, BlueJ, was
specifically designed with teaching in mind (Poplawski,
2001; Sanders, Heeler & Spradling, 2001). It provides an
easy-to-use interface with customizable templates for
class skeletons, and allows the user to instantiate objects
and test methods without having to write a driver pro-
gram. Kölling and Rosenberg (2001) used this environ-
ment during three semesters of an introductory object-
oriented programming course. The system supports an
“objects first” approach, provides visual representations
that help students understand the relationship between
classes and objects, and supports student experimenta-
tion, thereby promoting frequent and early testing of

1664

Introducing Java to the IT Master's Curriculum

code. Lewis and Watkins (2001) also found that BlueJ
helped them explain and demonstrate object-oriented
concepts from the beginning of their introductory pro-
gramming course within the MSc in Computing program,
in which the majority of students were graduates from
other disciplines. Barnes (2002) also described an ob-
jects-early approach to teaching introductory Java through
the use of LEGO® MINDSTORMS™ kits. Providing physi-
cal models was found to enhance and support the intro-
ductory programming course experience.

The debate between following an object-oriented or
procedural paradigm when first teaching Java has per-
sisted from the earliest days of its inclusion in program-
ming courses. Results of a survey of sixty-one students
who had taken or were taking a Java programming course
showed that while object-based programming was not
considered particularly difficult to learn, object-oriented
programming concepts were difficult (Madden & Cham-
bers, 2002). A recurring objection to “objects first” is that
students must proceed on faith that the concepts and
structures, which they make use of early on, will be
explained to them and understood later in the course.
Based on the premise that students should gradually
build upward from primitive data types and control struc-
tures in order to free them from the immediate conceptual
load associated with abstract data types, Cecchi,
Crescenzi, and Innocenti (2003) follow a “structured
programming before object-oriented programming” ap-
proach in their CS1 course. An automated development
tool called JavaMM was used in this course to remove the
burden of creating the complex structure of Java programs
from the student. A preliminary evaluation indicated that
the tool was very useful in improving the success rate of
students.

Little research exists on the use of Java as a first
programming language in graduate information systems
(IS) or information technology (IT) programs. While these
programs face a number of the same issues as those

mentioned earlier, there are significant differences be-
tween IT graduate and undergraduate students. For the
former, their first programming course may well be the
only one they take. In addition, many of them expect to see
environments and applications similar to those they have
been exposed to in the workplace. They may also have a
broader range of prior programming experience. It was
necessary to take these differences into account when
designing the course described next.

OBJECT-ORIENTED PROGRAMMING
COURSE

The graduate level object-oriented programming course
within the master’s level IT program was taught for the
first time in the fall of 2001 to 58 graduate students in three
sections. On a scale from one (novice/beginner) to seven
(expert), the average student prior programming experi-
ence level at that time was 3.14 ± 1.78. Figure 1 shows the
distribution.

A proactive approach is taken to support students in
what, for many, is their first exposure to programming. The
following are descriptions of choices that have been made
for enhancing the learning experience without adding to
student anxiety over learning to program in Java.

Supporting Materials

One critical decision concerned which integrated devel-
opment environment (IDE) to use. After extensive trials
with a number of environments, the Borland® JBuilder
IDE was selected due to the strength of its built-in help
facilities and its tools for writing, running, and debugging
code. While it could be confusing at first, JBuilder is easier
to use than most of the professional environments found
in the industry (Savitch, 2001). Plus, several students had
expressed interest in working with JBuilder because it was
being used in their own work environments. JBuilder was
installed on the computers in all of the technology class-
rooms and computer labs, and students were encouraged
to download their own copies from the Web.

A review of several textbooks led to the selection of
Computing with Java: Programs, Objects, and Graphics
by Gittleman (2001). This book was chosen for its in-depth
coverage of critical course concepts, the clarity of its text,
and its frequent and easy to follow code examples. The
course Web site provides access to weekly lecture notes,
assignments, individualized grades and comments, source
code for programming examples from the lecture, and links
to other relevant sites, such as Java’s class libraries.

0.0

5.0

10.0

15.0

20.0

25.0

30.0

1 2 3 4 5 6 7

Experience Rating

P
er

ce
n

t

Figure 1. Self-ranking of prior programming experience

4 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/introducing-java-master-curriculum/14492

Related Content

Wrapper Feature Selection based on Genetic Algorithm for Recognizing Objects from Satellite

Imagery
Nabil M. Hewahiand Eyad A. Alashqar (2015). Journal of Information Technology Research (pp. 1-20).

www.irma-international.org/article/wrapper-feature-selection-based-on-genetic-algorithm-for-recognizing-objects-from-

satellite-imagery/135916

Incorporation of IRM Concepts in Undergraduate Business Curricula
Raymond Mcleod Jr.and Kathy Brittain-White (1988). Information Resources Management Journal (pp. 28-

38).

www.irma-international.org/article/incorporation-irm-concepts-undergraduate-business/50906

Content-Based Retrieval Concept
Yung-Kuan Chanand Chin-Chen Chang (2005). Encyclopedia of Information Science and Technology, First

Edition (pp. 564-568).

www.irma-international.org/chapter/content-based-retrieval-concept/14298

Comparison of Tied-Mixture and State-Clustered HMMs with Respect to Recognition

Performance and Training Method
Hiroyuki Segi, Kazuo Onoe, Shoei Sato, Akio Kobayashiand Akio Ando (2014). Journal of Information

Technology Research (pp. 1-17).

www.irma-international.org/article/comparison-of-tied-mixture-and-state-clustered-hmms-with-respect-to-recognition-

performance-and-training-method/116635

Critical IT Project Management Competencies: Aligning Instructional Outcomes with Industry

Expectations
Faith-Michael Uzoka, Kalen Keavey, Janet Miller, Namrata Khemkaand Randy Connolly (2018).

International Journal of Information Technology Project Management (pp. 1-16).

www.irma-international.org/article/critical-it-project-management-competencies/212587

http://www.igi-global.com/chapter/introducing-java-master-curriculum/14492
http://www.irma-international.org/article/wrapper-feature-selection-based-on-genetic-algorithm-for-recognizing-objects-from-satellite-imagery/135916
http://www.irma-international.org/article/wrapper-feature-selection-based-on-genetic-algorithm-for-recognizing-objects-from-satellite-imagery/135916
http://www.irma-international.org/article/incorporation-irm-concepts-undergraduate-business/50906
http://www.irma-international.org/chapter/content-based-retrieval-concept/14298
http://www.irma-international.org/article/comparison-of-tied-mixture-and-state-clustered-hmms-with-respect-to-recognition-performance-and-training-method/116635
http://www.irma-international.org/article/comparison-of-tied-mixture-and-state-clustered-hmms-with-respect-to-recognition-performance-and-training-method/116635
http://www.irma-international.org/article/critical-it-project-management-competencies/212587

