
2116

3�-
�+0
��������
	�
"�����
�
�����	��

Eric Pardede
La Trobe University, Australia

J. Wenny Rahayu
La Trobe University, Australia

David Taniar
Monash University, Australia

Copyright © 2005, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

INTRODUCTION

Relational Database (RDB) is arguably the most widely
used repository for database applications. Since the 1970s,
we have witnessed the relational data model, from which
the RDB is originated, evolving. The progress aims to
answer the increasing requirement in database applica-
tions. One of them is the requirement to deal with complex
structure of real world problems. Unlike its Object-Ori-
ented Database (OODB) counterpart, the RDB, for ex-
ample, does not have facilities to store large structured
objects, semi-structured data, and so forth.

The question might have been answered with the
release of new version Structured Query Language (SQL)
(Fortier, 1999; Melton, Simon, & Gray, 2001). The new SQL
has provided many new features including many new data
types. Since SQL is used for database definition and
manipulation for relational model, the extension has en-
riched the modeling capability in RDB.

A problem then arises. With the existence of the new
data types in the new SQL, the whole database modeling
processes have changed. So far, database designers still
use the conventional method for RDB design and imple-
mentation. This method can create inefficient and incor-
rect use of the new data types.

This work aims to show how new SQL data types affect
the database modeling processes. It highlights new op-
portunities and new research challenges, brought by the
new standard.

BACKGROUND: HISTORY OF SQL

SQL was introduced in 1970 and has emerged as the
standard language for RDB (Melton, Simon, & Gray,
2001). The 1992 revision, SQL2, has been widely used by
all Relational Database Management System (RDBMS)
products. In 1993, an attempt to develop a new standard
was started since the RDBMS vendors had enhanced their
existing relational products with Object-Oriented (OO)

features. The existing standard had become somewhat
obsolete because it provided no support for OO features.

Many of the vendors created their own language
extension of SQL to retrieve and manipulate data such as
POSTQUEL (Stonebraker, 1986), Starburst (Lindsay &
Haas, 1990), and so forth. These are vendor-specific
languages and still there is no standard that can be used
and is acceptable to all vendors. For standardization
purposes, a new SQL 1999 was developed.

SQL 1999 has been characterized as “OO SQL” and it
has become the foundation for several DBMS such as
Oracle8. Ironically, many believe that SQL2 will still be
used in the future (Elmasri & Navathe, 2002), since many
researchers and practitioners still have unsettled argu-
ments on many SQL 1999 issues.

Further, the standardization body ANSI/ISO has
started to review SQL 1999 and aims to release a new SQL4
version in few more years. At the time of writing, this
version is still an ongoing work and no release date has
been announced (Melton, 2002). SQL4 adds some fea-
tures to SQL 1999, and it also reviews its previous ver-
sions.

The new SQL has added some new data types to
accommodate complex data structures. They are very
useful to model real world problems. However, they have
a big impact upon the database modeling and implemen-
tation.

DATABASE MODELING

Database modeling involves three main phases: conceptual
model, logical model, and physical model (see Figure 1).

In the conceptual model level, the database designers
capture the database user requirements. To model an
RDB, the database designers can use many semantic data
modelling such as ER, NIAM, EER, Functional Modeling,
and so forth. With SQL4 data type extension, we cannot
capture all features using traditional data modeling any-
more.

 2117

New SQL Standard in Database Modeling

�

The logical model links the conceptual model with the
physical implementation. In RDB, this phase is started by
transforming the conceptual model into logical design. It
is followed by normalization, before we can come up with
a set of relations that do not contain anomalies.

In traditional RDB, database designers are already
familiar with the transformation methodology (Elmasri &
Navathe, 2002), normalization rules (Codd, 1972), and so
forth. However, this existing design was developed for
simple data types. We do not know whether the old rules
can be applicable to the new data types introduced in new
SQL4 standard.

The physical model will be different based on how the
database is implemented using DBMSs. In this phase, we
are required to develop criteria in selecting DBMS. One of
the most important criteria is the ability to implement all
data type requirements.

For pure RDB that has simple and atomic data type, all
DBMS products can be used for the implementation.
These products are mainly developed based on SQL2
standard. With the existence of many new data types in
SQL4, we need to search the newest DBMS version that
can meet the requirement and design.

NEW SQL DATA TYPES

SQL4 classifies the data types into three main classes:
predefined, constructed, and user-defined (Melton, 2002).

It has few extensions from SQL 1999, but there are a large
number of additional data types from SQL2, which is a
pure relational model language. Figure 2 illustrates the
complete data types supported by current SQL.

Predefined Data Types. Predefined or built-in data
types are supported by original SQL. Even though pre-
defined, sometimes the users are still required to deter-
mine certain parameters. They are atomic, and therefore
very suitable for conventional relational model implemen-
tation.

New SQL added Boolean and large object type (BLOB
and CLOB). Boolean data type enables us to represent the
true or false values instead of using a character value with
permissible values “T” or “F” (Melton, Simon, & Gray,
2001). BLOB can hold a very large binary piece of data
such as the digital representation of one’s signature.
CLOB can hold a very large, variably sized, and usually
non structured group of characters such as one’s resume.

Constructed Data Types. There are two categories of
constructed data types: atomic and composite (Melton,
2002; Melton, Simon, & Gray, 2001). From the latest
development, SQL4 supports one atomic constructed
type and three composite types.

The atomic constructed data type is REF type. Its
value can be used to address a site holding another value.
The site pointed to can be another constructed data type
or user-defined type in a typed table.

The first composite data type is Row. It contains a
sequence of attribute names and their data types. Since it
is defined like a flat table, a row type inside a table
resembles a nested table. The next data type is array,
which can hold composite elements of similar type with
ordering semantic. Finally, multiset contains composite
elements that can be duplicated and do not need an

Figure 1. Database modeling phases

Database
Conceptual

Model

Database
Logical
Model

Database
Physical
Model

Figure 2. SQL4 data types classification

Exact

Boolean

SQL Data Types

Ref Collection

Array Multiset

Row

Atomic Composite

Constructed Types

BLOB Bit Char.

Varying Fixed Varying Fixed CLOB

SQL4 Added
Data Type

Approx.

String Interval Numeric Datetime

T.stamp Date Time

User-Defined Types

Distinct Structured

Predefined Types

4 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/new-sql-standard-database-modeling/14570

Related Content

Towards a Framework for Evaluating ICT-Based Materials
Hitendra Pillayand John A. Clarke (2009). Encyclopedia of Information Communication Technology (pp.

759-766).

www.irma-international.org/chapter/towards-framework-evaluating-ict-based/13432

Using "Blended Learning" to Develop Tertiary Students' Skills of Critique
Paul Lajbcyierand Christine Spratt (2008). Information Communication Technologies: Concepts,

Methodologies, Tools, and Applications (pp. 1202-1215).

www.irma-international.org/chapter/using-blended-learning-develop-tertiary/22732

The Role of Neural Networks and Metaheuristics in Agile Software Development Effort

Estimation
Anupama Kaushik, Devendra Kumar Tayaland Kalpana Yadav (2020). International Journal of Information

Technology Project Management (pp. 50-71).

www.irma-international.org/article/the-role-of-neural-networks-and-metaheuristics-in-agile-software-development-effort-

estimation/255102

A Support Based Initialization Algorithm for Categorical Data Clustering
Ajay Kumarand Shishir Kumar (2018). Journal of Information Technology Research (pp. 53-67).

www.irma-international.org/article/a-support-based-initialization-algorithm-for-categorical-data-clustering/203008

Foundations for MDA Case Tools
Liliana María Favre, Claudia Teresa Pereiraand Liliana Inés Martinez (2009). Encyclopedia of Information

Science and Technology, Second Edition (pp. 1566-1573).

www.irma-international.org/chapter/foundations-mda-case-tools/13786

http://www.igi-global.com/chapter/new-sql-standard-database-modeling/14570
http://www.irma-international.org/chapter/towards-framework-evaluating-ict-based/13432
http://www.irma-international.org/chapter/using-blended-learning-develop-tertiary/22732
http://www.irma-international.org/article/the-role-of-neural-networks-and-metaheuristics-in-agile-software-development-effort-estimation/255102
http://www.irma-international.org/article/the-role-of-neural-networks-and-metaheuristics-in-agile-software-development-effort-estimation/255102
http://www.irma-international.org/article/a-support-based-initialization-algorithm-for-categorical-data-clustering/203008
http://www.irma-international.org/chapter/foundations-mda-case-tools/13786

