
2150

���������������������	���������

Jana Polgar
Monash University, Australia

Copyright © 2005, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

INTRODUCTION

Software measurement is considered to be an efficient
means to monitor the quality of software projects, predict
cost of maintenance, assess reusability of components,
provide prediction of faults in similar projects, and con-
tribute to improvement of the software development pro-
cess. This chapter surveys software metrics literature
with particular focus on object-oriented metrics, and
metrics for measuring code complexity. Furthermore, we
provide a critical view of software metrics and their usabil-
ity.

BRIEF SURVEY OF OBJECT-
ORIENTED METRICS

Since 1995, the trend toward incorporating measurement
theory into all software metrics has led to identification of
scales for measures, thus providing some perspective on
dimensions. The most common scale types based on
measurement theory are as follows:

• Ordinal scale: An ordered set of categories (often
used for adjustment factors in cost models based on
a fixed set of scale points)

• Interval scale: Numerical values, where the differ-
ence between each consecutive pair of numbers is
an equivalent amount, but there is no “real” zero
value

• Ratio scale: Elements are assigned numbers such
that differences and ratios between the numbers
reflect differences and ratios of the attribute

• Nominal scale: A set of categories into which an
item is classified.

• Absolute scale: Elements are assigned numbers
such that all properties of the numbers reflect analo-
gous properties of the attribute

Fetchke (1995) and Zuse (1994) analyzed the proper-
ties of object-oriented software metrics on the basis of
measurement theory. The underlying notion of measure-
ment theory is based on intuitive or empirical existence of
relationships among objects within our Universe of Dis-
course. These relationships can then be formally de-

scribed in a mathematically derived formal relational sys-
tem. They also investigated how and under what condi-
tions the software measures may be viewed as ordinal,
ratio, nominal, and interval. They admitted that these
scale types present very little meaning with regard to
maintainability and “error-proneness” of the application.

The contribution of Zuse and Fetchke’s work is in the
introduction of specific perspectives of measures. They
emphasize preciseness of definition of scales as well as
definition of an attribute that is measured.

The axiomatic approach was proposed by Weyuker
(1988). This framework is based on a set of nine axioms, as
listed in Table 1.

In Weyeker’s metric proposal, we observe the formal-
ization of structural inheritance complexity metrics. Prop-
erty 9 means that splitting one class into two classes can
reduce the complexity. The experience supports argument
by Chidamber and Kemerer (1994) that the complexity of
interaction may even increase when classes are divided.

Fenton and Pfleger (1997) used the term “software
metrics” to describe the following artifacts:

• A number derived, usually empirically, from a pro-
cess or code [for example, lines of code (LOC) or
number of function points]

• A scale of measurement (The example used in
Fenton’s book is nominal scale or classification.)

• An identifiable attribute used to provide specific
functionality (an example is “portability” or class
coupling metric)

• Theoretical or data-driven model describing a de-
pendent variable as a function of independent vari-
ables (an example can be the functional relationship
between maintenance effort and program size)

These descriptions typically lead to widespread con-
fusion between models and their ability to predict desired
software characteristics, thus their suitability in being
used for estimation purposes.

The metrics of Chidamber and Kemerer, summarized in
Table 2, also have foundation in measurement theory. The
authors do not base their investigation on the extensive
structure. The criticism by Churcher and Sheppard (1994)
points to the ambiguity of some metrics, particularly
WMC. Hitz and Montazeri (1996) and Fetchke (1995)
showed that CBO does not use a sound empirical relation

 2151

Object Oriented Software Metrics

�
Table 1. Weyuker’s axioms

Axiom Name Description
1 Noncoarseness ()() (())()P Q P Q Qµ µ∃ ∃ ≠

2 Granularity Let c be non-negative number. Then there is finite number of class
with the complexity = c

3 Nonuniquesniss There is distinct number of classes P and Q such that

() ()P =� �µ

4 Design detail matter ()() (())()P Q P Qand P Qµ µ∃ ∃ ≡ ≠

5 Monotonicity ()() (() () ())()P Q P P Q and Q P Qµ µ µ µ∀ ∀ ≤ + ≤ +

6 Non-equivalence of
interaction

a) ()()() () () () ()P Q R P Q and P R Q Rµ µ µ µ∃ ∃ ∃ = + ≠ +

b) ()()() () () () ()P Q R P Q and R P R Qµ µ µ µ∃ ∃ ∃ = + ≠ +

7 Interaction among
statements

Not considered among objects

8 No change on renaming If P is renaming of Q then () ()P Qµ µ=

9 Interaction CAN
increase complexity

()() (() ())()P Q P Q P Qµ µ µ∃ ∃ + < +

Table 2. Chidamber and Kemerer metrics (Chidamber, 1994)

Weighted Methods per Class (WMC)

1

n

i
i

WMC c
=

= ∑

where ic is the static complexity of each of the n methods

Depth of Inheritance Tree (DIT) With multiple inheritance the max DIT is the length from
node to the root

Number of Children (NOC) Number of immediate subclasses
Coupling Between Object Classes (CBO) Number of other classes to which a particular class is

coupled. CBO maps the concept of coupling for a class into a
measure.

The Response for a Class (RFC) The size of response set for a particular class.
The lack of Cohesion metric (LCOM) 0LCOM P Q if P Q otherwise= − > =

system, particularly, that it is not based on the extensive
structures. Furthermore, LCOM metric allows representa-
tion of equivalent cases differently, thus introducing
additional error.

Coupling measures form an important group of mea-
sures in the assessment of dynamic aspects of design
quality. Coupling among objects is loosely defined as the
measure of the strength of the connection from one object
to another. The approaches of different authors mostly
differ in definition of the measured attribute—coupling
among classes. Table 3 provides a summary of differences
in definitions. Some of the attributes may be known only
too late in development.

Two aspects impact coupling between classes: the
frequency of messaging between classes (cardinality and
multiplicity of objects derived from these classes) and

type of coupling. The discussion in Eder and Kappel
(1994) distinguishes among three types: interaction cou-
pling, component coupling, and inheritance coupling.
The degree of coupling is based on defining a partial order
on the set of coupling types. The low end is described by
small and explicit interrelationships, and the high end of
the scale is assigned to large, complex and implicit inter-
relationships. The definition is subjective and requires
empirical assignment of values in order to be used as a
software quality indicator.

Cohesion is defined as a degree to which elements in
a class belong together. The desirable property of a good
design is to produce a highly cohesive classes. Compari-
son of different frameworks and thorough discussion can
be found in Briand’s work (Briand, Daly, & Wurst, 1997).
Eder (Eder & Kappel, 1994) provided a comprehensive

4 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/object-oriented-software-metrics/14576

Related Content

Quality Assessment of Standard and Customized COTS Products
Sudhaman Parthasarathy, C. Sridharan, Thangavel Chandrakumarand S. Sridevi (2020). International

Journal of Information Technology Project Management (pp. 1-13).

www.irma-international.org/article/quality-assessment-of-standard-and-customized-cots-products/258549

Aligning Six Sigma and ITIL to Improve IT Service Management
Peter C. Chan, Shauntell R. Durant, Verna Mae Galland Mahesh S. Raisinghani (2010). Information

Resources Management: Concepts, Methodologies, Tools and Applications (pp. 1750-1765).

www.irma-international.org/chapter/aligning-six-sigma-itil-improve/54569

An Empirical Investigation of the Consequences of Technostress: Evidence from China
Leida Chenand Achita Muthitacharoen (2016). Information Resources Management Journal (pp. 14-36).

www.irma-international.org/article/an-empirical-investigation-of-the-consequences-of-technostress/146560

An Inductive Logic Programming Algorithm Based on Artificial Bee Colony
Yanjuan Li, Mengting Niuand Jifeng Guo (2019). Journal of Information Technology Research (pp. 89-104).

www.irma-international.org/article/an-inductive-logic-programming-algorithm-based-on-artificial-bee-colony/216401

Design and Implementation of a Wide Area Network
Rohit Rampal (2002). Annals of Cases on Information Technology: Volume 4 (pp. 427-439).

www.irma-international.org/article/design-implementation-wide-area-network/44522

http://www.igi-global.com/chapter/object-oriented-software-metrics/14576
http://www.irma-international.org/article/quality-assessment-of-standard-and-customized-cots-products/258549
http://www.irma-international.org/chapter/aligning-six-sigma-itil-improve/54569
http://www.irma-international.org/article/an-empirical-investigation-of-the-consequences-of-technostress/146560
http://www.irma-international.org/article/an-inductive-logic-programming-algorithm-based-on-artificial-bee-colony/216401
http://www.irma-international.org/article/design-implementation-wide-area-network/44522

