2156

Object-Oriented Software Reuse in Business

Systems

Daniel Brandon
Christian Brothers University, USA

INTRODUCTION

“Reuse [software] engineering isaprocesswhere atech-
nology asset is designed and devel oped following archi-
tectural principles, and with theintent of being reused in
thefuture” (Bean, 1999). “If programming hasaHoly Grail,
wide-spread codereuseisit with asilver bullet. Whilel T
has made and continuesto makelaudabl e progressin our
reuse, we never seem to make great stridesin this area”
(Grinzo, 1998). “ The quest for that Holy Grail hastaken
many developers over many years down unproductive
paths” (Bowen, 1997). This article is an overview of
softwarereuse methods, particularly object oriented, that
have been found effective in business systems over the
years.

BACKGROUND

Traditional software development is characterized by
many disturbing but well documented facts, including:

. Most software development projects “fail” (60%)
(Williamson, 1999).

. The supply of qualified IT professionals is much
less than the demand (www.bls.gov, 2003).

. The complexity of software is constantly increas-
ing.

. IT needs “better,” “cheaper,” “faster” software
devel opment methods.

Over the years, IT theorists and practitioners have
comeup withanumber of busi nessand technical methods
to address these problems and improve the software
devel opment processand resultsthereof. Most notablein
thissequence of techniquesare: CASE (Computer Aided
Software Engineering), JAD (Joint Application Devel op-
ment), Prototyping, 4GL (Fourth Generation languages),
and Pair/Xtremeprogramming. Whilethesemethodshave
often provided some gains, none have provided the
improvements necessary to become that “silver bullet”.
CA SE methodshaveallowed devel opment organi zations
to build the wrong system even faster; “wrong” in the
sense that requirements are not met and/or the resulting

system isneither maintainable nor adaptable. JAD meth-
ods tend to waste more of everyone'stime in meetings.
While prototypes can help better define user require-
ments, the tendency (or expectation) that the prototype
can be easily extended into the real systemisvery prob-
lematic. The use of 4GL languages only speeds up the
development of the parts of the system that were easy to
make anyway, while unabl e to address the more difficult
and time consuming portions. Pair programming hassome
merits, but stifles creativity and uses more time and
money.

The only true “solution” has been effective software
reuse. Reuse of existing proven componentscanresultin
the faster development of software with higher quality.
Improved quality results from both the use of previous
“tried and true” components and the fact that standards
(technical and business) can be built into the reusable
components (Brandon, 2000). There are several types of
reusable components that can address both the design
and implementation process. These come in different
levels of “granularity,” and in both object oriented and
non-object oriented flavors.

“ Softwarereusereceived much attention in the 1980s
but did not catch onin abigway until the advent of object
oriented languagesandtools” (Anthes, 2003). In Charles
Darwin’s theory of species survival, it was the most
adaptable species that would survive (not the smartest,
strongest, or fastest). In today’s fast moving business
and technical world, software must be adaptable to sur-
vive and be of continuing benefit. Object oriented soft-
ware offers a very high degree of adaptability. “Object
technology promisesaway to deliver cost-effective, high
quality and flexible systems on time to the customer”
(McClure, 1996). “IS shops that institute component-
based software devel opment reduce failure, embrace ef-
ficiency and augment thebottomline” (Williamson, 1999).
“The bottom line is this: while it takes time for reuse to
settle into an organization — and for an organization to
settleon reuse—you can add increasing val ue throughout
theprocess” (Barrett, 1999). Wesay “ object technology,”
not just adopting an object oriented language (such as
C++ or Java), since one can still build poor, non-object
oriented, and non-reusable software even using a fully
object oriented language.

Copyright © 2005, Idea Group Inc., distributing in print or electronic forms without written permission of 1GI is prohibited.



Object-Oriented Software Reuse in Business Systems

TYPES AND APPLICATIONS OF
REUSE

Radding defines several different types of reusable com-
ponents (Radding, 1998), whichformatypeof “granular-
ity scale”:

. GUI widgets - effective, but only provide modest
payback

. Server-Side components - provide significant pay-
back but require extensive up-front design and an
architectural foundation.

. Infrastructure components - generic services for
transactions, messaging, and database ... require
extensive design and complex programming

. High-level patterns - identify components with
high reuse potential

. Packaged applications - only guaranteed reuse, ...
may not offer the exact functionality required

Anevenlower level of granularity isoften defined to
include simpletext files, which may be used in anumber
of code locations such as “read-me” and documentation
files, “help” files, Web content, business rules, XML
Schemas, test cases, and so forth. Among the most
important recent developments of object oriented tech-
nologiesisthe emergence of design patterns and frame-
works, which are intended to address the reuse of soft-
waredesignand architectures (Xiaoping, 2003). Thereuse
of “patterns” can haveahigher level of effectivenessover
just source code reuse. Current pattern level reuse in-
cludes such entities asa J2EE Session Facade or the .Net
Model-View-Controller pattern.

Reusing code also has several key implementation
areas: application evolution, multiple implementations,
standards, and new applications. The reuse of code from
prior applications in new applications has received the
most attention. However, just asimportant isthe reuse of
code (and the technology embedded therein) within the
sameapplication.

Application Evolution

Applications must evolve even before they are com-
pletely developed, since the environment under which
they operate (business, regulatory, social, political, etc.)
changes during the time the software is designed and
implemented. Thisisthetraditional “ requirementscreep”.
Then after theapplicationissuccessfully deployed, there
is a constant need for change.

Multiple Implementations

Another key need for reusability within the same applica-
tion isfor multiple implementations. The most common
need for multipleimplementationsinvol vescustomizations,
internationalization, and multiple platform support. Orga-
nizations whose software must be utilized globally may
have a need to present an interface to customers in the
native language and socially acceptable look and feel
(“localization”). Themultipleplatform dimension of reuse
today involves an architectural choice in languages and
delivery platforms.

Corporate Software Development
Standards

Corporate software devel opment standards concern both
maintaining standards in all parts of an application and
maintaining standards across all applications. “For a
computer system to have lasting valueit must exist com-
patibly with users and other systemsin an ever-changing
Information Technology (1 T) world” (Brandon, 2000). As
stated by Weinschenk and Yeo, “Interface designers,
project managers, developers, and business units need a
common set of look-and-feel guidelines to design and
develop by” (Weinschenk, 1995). In the area of user
interface standards alone, Appendix A of Weinschenk’s
book presents a list these standards; there are over 300
items (Weinschenk, 1997). Many companies today still
rely on some type of printed “ Standards Manuals”.

EFFECTIVE SOFTWARE REUSE

Only about 15% of any information system servesatruly
original purpose; the other 85% could be theoretically
reused in future information systems. However, reuse
rates over 40% are rare (Schach, 2004). “ Programmers
have been swapping code for as long as software has
existed” (Anthes, 2003). Formal implementation of reuse
in various forms of software reuse has been a part of IT
technology since the early refinementsto 3GL’s (Third
Generation Languages). COBOL had the “copy book”
concept where common code could be kept in a separate
file and used in multiple programs. Almost all modern
3GL shavethissame capability, eventoday’ s Web based
languages like HTML and JavaScript on the client side,
and PHP (on the server side). HTML has “server side
includes,” JavaScript has*“.js” and “.css” files, and PHP
has“require’ files(“.inc"). Oftenusedinconjunctionwith

2157



3 more pages are available in the full version of this document, which may be
purchased using the "Add to Cart" button on the publisher's webpage:
www.igi-global.com/chapter/object-oriented-software-reuse-business/14577

Related Content

Formation of Managers of Biotechnology Companies: A “Presentual” (Presential and Virtual)
Environment for Learning

Maria José Peset Gonzalezand César Ullastres Garcia (2014). Journal of Cases on Information
Technology (pp. 13-23).
www.irma-international.org/article/formation-of-managers-of-biotechnology-companies/120701

Research Methodology
Swati C. Jagdale, Rahul U. Hudeand Aniruddha R. Chabukswar (2019). Advanced Methodologies and
Technologies in Library Science, Information Management, and Scholarly Inquiry (pp. 564-578).

www.irma-international.org/chapter/research-methodology/215957

An Experimental Analysis of Modified EEECARP: An Optimized Cluster-Based Adaptive Routing
Protocol for Modern-Secure-Wireless Sensor Networks

Venkata Ramana Sarella, Deshai Nakka, Sekhar B. V. D. S., Krishna Rao Salaand Sameer Chakravarthy
V. V. S. S. (2020). Novel Theories and Applications of Global Information Resource Management (pp. 318-
336).

www.irma-international.org/chapter/an-experimental-analysis-of-modified-eeecarp/242275

InfoSec Policy - The Basis for Effective Security Programs

Herbert J. Mattordand Michael E. Whitman (2005). Encyclopedia of Information Science and Technology,
First Edition (pp. 1518-1523).

www.irma-international.org/chapter/infosec-policy-basis-effective-security/14466

Spatial Analytics for Rancho Cucamonga: A City on a Map
Omer A. Alrwaisand Brian N. Hilton (2014). Journal of Cases on Information Technology (pp. 40-49).

www.irma-international.org/article/spatial-analytics-for-rancho-cucamonga/109516



http://www.igi-global.com/chapter/object-oriented-software-reuse-business/14577
http://www.irma-international.org/article/formation-of-managers-of-biotechnology-companies/120701
http://www.irma-international.org/chapter/research-methodology/215957
http://www.irma-international.org/chapter/an-experimental-analysis-of-modified-eeecarp/242275
http://www.irma-international.org/chapter/infosec-policy-basis-effective-security/14466
http://www.irma-international.org/article/spatial-analytics-for-rancho-cucamonga/109516

