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INTRODUCTION

A robustness analysis for neural networks, namely the
evaluation of the effectsinduced by perturbations affect-
ing the network weights, is arelevant theoretical aspect
since weights characterise the “knowledge space” of the
neural model and, hence, itsinner nature.

In this direction, a study of the evolution of the
network’ s weights over training time (training perturba-
tions) allows the researcher for shedding light on the
mechani sm behind the generation of theknowledge space.
Conversely, the analysis of a specific knowledge space
(fixed configuration for weights) provideshintsabout the
relationship between knowledge space and accuracy.
This aspect is particularly relevant in recurrent neural
networks, where even small modifications of the weight
valuesarecritical to performance(e.g., think of thestabil-
ity of anintelligent controller comprisinganeural network
and issues, leading to robust control).

Robustness analysis must also be taken into account
when implementing a neural network (or the intelligent
computational system) in aphysical device or inintelli-
gent wireless sensor networks. Behavioral perturbations
affecting theweights of aneural network abstract uncer-
tainties such asfinite precision representations, fluctua-
tionsof the parametersrepresenting theweightsinanal og
solutions (e.g., associated with the production process of
aphysical component), aging effectsor morecomplex and
subtle uncertaintiesin mixed implementations.

In this article, we suggest a robustness/sensitivity
analysisinthelarge, thatis, without assuming constraints
onthesizeor natureof the perturbation; assuch, thesmall
perturbation hypothesis becomes only a sub-case of the
theory. The suggested sensitivity/robustness analysis
can be applied to all neural network models (including
recurrent neural models) involved in system identifica-
tion, control signal/image processing and automation-
based applications without any restriction to study the
relationship between perturbations affecting the knowl-
edge space and the induced accuracy |oss.

ROBUSTNESS ANALYSIS: THE
STATE OF THE ART

The sensitivity/robustness issue has been widely ad-
dressed intheneural network community with aparticular
focus on specific neural topologies. In particular, when
the neural network is composed of linear units, the rela-
tionship between perturbations and the induced perfor-
mance loss can be obtained in a closed form (Alippi &
Briozzo, 1998). Conversely, when the neural topology is
non-linear we have either to assume the small perturba-
tion hypothesis or particular assumptions about the sto-
chastic nature of theneural computation, for example, see
Alippi andBriozzo (1998), Piché(1995), and Alippi (2002b);
unfortunately, such hypotheses are not always satisfied
in real applications. Another classic approach requires
expanding theneural computationwith Taylor around the
nominal value of the trained weights. A subsequent
linearized analysisfollowswhich allowstheresearcher for
solving the sensitivity issue problem (Piche, 1995). This
last approach hasbeenwidely used intheimplementation
design of neural networks where the small perturbation
hypothesis abstracts small errors introduced by finite
precision representations of theweights (Dundar & Rose,
1995; Holt & Hwang, 1993). Again, the validity of the
analysisdependsonthevalidity of thesmall perturbation
hypothesis.

Differently, other authors avoid the small perturba-
tion assumption by focusing the attention on very spe-
cific neural network topologies and/or by introducing
particular assumptions regarding the distribution of per-
turbations, internal neural variables and inputs as done
for Madalines neural networks (Stevenson, Winter, &
Widrow, 1990; Alippi, Piuri, & Sami, 1995).

Some other authorstackletherobustnessissuediffer-
ently by suggesting techniques leading to neural net-
workswith improved robustness ability by acting on the
learning phase (e.g., see Alippi, 1999) or by introducing
modul ar redundancy (Edwards& Murray, 1998); though,
no robustness indexes are suggested there.
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A ROBUSTNESS ANALYSIS IN THE
LARGE

In the following, we consider a generic neural network
implementing the §(x) = f(é, x) function where 6 isthe
weight vector of the trained neural network.

In several neural models, and in particular in those
related to system identification and control, therelation-
ship between the inputs and the output of the system is
captured by considering a regression vector ¢, which
containsalimited time-window of actual and past inputs,
outputs, and, possibly, predicted outputs. Of particular
interest are those models which can be represented by

meansof themodel structures j(t) = f (p) wherefunction

f () isaregression-typeneural network, characterised by
N, inputs, N, non-linear hidden units and a single effec-
tivelinear/non-linear output (Hassoun, 1995; Hertz, Krogh,
& Palmer, 1991; Ljung, 1987; Ljung, Sjoberg, &
Hjalmarsson, 1996).

The presenceof adynamicinthedatacan bemodelled
by asuitable number of delay elementswhich may affect
inputs (time history on external inputs u(t)) system out-
puts (time history on y(t)) on predicted outputs (time
history on §(t)) or residuals (time history on
e(t) = Y(t) — y(t) ). Whereitisneeded, y(t), y(t) ande(t) are
vectorial entities, a component for each independent
distinct variable.

Several neural model structures have been suggested
in the literature, which basically differ in the regression
vector; examplesaretheNARMAX structureswhich can
be obtained by considering both past inputs and outputs:

¢ =[u(t),u(t -1, u(t—n,), y(t -1,
V(-1 Bt-1), - &t —1,)]

and the NOE oneswhich processonly the past inputsand

¢ =[u(t),u(t-1,-u(t-n,), y(t-1, - yt-n)l.

Static neural networks, such as classifiers, can be ob-
tained by simply considering external inputs

Q= [U(t),u(t _1)1' ",U(t - nu)]'

We denote by §,(x)= fA(é,A,x) the mathematical

description of the perturbed computation and by Ae DcRP
a generic p-dimensional perturbation vector, a compo-
nent for each independent perturbation affecting the

network weightsof model §(x) . The perturbation spaceD

is characterised in stochastic terms by providing the
probability density function pdf,.
To measure the discrepancy between §,(x) and y(x)

or Y(x) we consider a generic loss function U(A). A
common examplefor U isthemean squareerror (M SE) loss
function

uw=¢ﬁwmrmmw O

but a generic Lebesgue measurable loss function with
respect to D can be taken into account (Jech, 1978). The
formalization of theimpact of perturbation onthe perfor-
mance function can be simply derived as:

Definition: Robustness Index

We say that a neural network isrobust at level ¥ in D,
when the robustness index 7 is the minimum positive
value for which

U(A)<7.vVAeD- @

Immediately, fromthedefinition of robustnessindex,
wehavethat ageneric neural network NN1ismorerobust
than another NN2iff 7, <7,; theproperty holdsindepen-

dently from the topology of the two neural networks.

The main problem related to the determination of the
robustness index ¥ is that we have to compute
U(A),VAe D if wewishatight bound. The 7 -identifica-
tion problem is, therefore, intractable from a computa-
tional point of view if werelax all assumptionsmadeinthe
literatureaswedo. To deal with thecomputational aspect
we associate adual probabilistic problem to (2):

Robustness Index: Dual Problem

Wesay that aneural network isrobust at level ¥ inD with

confidence n when ¥ isthe minimum positive value for
which

PrU(A)<7)=n holds vae D. €)

Theprobabilistic problemisweaker than thedetermin-
isticonesinceit tolerates the existence of aset of pertur-
bations (whose measureaccordingto Lebesgueis1-n) for

which u(A) > 7 . In other words, not more than 1001% of
perturbations Ac D will generate a loss in performance
larger than ¥ . Probabilistic and deterministic problems
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