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INTRODUCTION

A robustness analysis for neural networks, namely the
evaluation of the effects induced by perturbations affect-
ing the network weights, is a relevant theoretical aspect
since weights characterise the “knowledge space” of the
neural model and, hence, its inner nature.

In this direction, a study of the evolution of the
network’s weights over training time (training perturba-
tions) allows the researcher for shedding light on the
mechanism behind the generation of the knowledge space.
Conversely, the analysis of a specific knowledge space
(fixed configuration for weights) provides hints about the
relationship between knowledge space and accuracy.
This aspect is particularly relevant in recurrent neural
networks, where even small modifications of the weight
values are critical to performance (e.g., think of the stabil-
ity of an intelligent controller comprising a neural network
and issues, leading to robust control).

Robustness analysis must also be taken into account
when implementing a neural network (or the intelligent
computational system) in a physical device or in intelli-
gent wireless sensor networks. Behavioral perturbations
affecting the weights of a neural network abstract uncer-
tainties such as finite precision representations, fluctua-
tions of the parameters representing the weights in analog
solutions (e.g., associated with the production process of
a physical component), aging effects or more complex and
subtle uncertainties in mixed implementations.

In this article, we suggest a robustness/sensitivity
analysis in the large, that is, without assuming constraints
on the size or nature of the perturbation; as such, the small
perturbation hypothesis becomes only a sub-case of the
theory. The suggested sensitivity/robustness analysis
can be applied to all neural network models (including
recurrent neural models) involved in system identifica-
tion, control signal/image processing and automation-
based applications without any restriction to study the
relationship between perturbations affecting the knowl-
edge space and the induced accuracy loss.

ROBUSTNESS ANALYSIS: THE
STATE OF THE ART

The sensitivity/robustness issue has been widely ad-
dressed in the neural network community with a particular
focus on specific neural topologies. In particular, when
the neural network is composed of linear units, the rela-
tionship between perturbations and the induced perfor-
mance loss can be obtained in a closed form (Alippi &
Briozzo, 1998). Conversely, when the neural topology is
non-linear we have either to assume the small perturba-
tion hypothesis or particular assumptions about the sto-
chastic nature of the neural computation, for example, see
Alippi and Briozzo (1998), Pichè (1995), and Alippi (2002b);
unfortunately, such hypotheses are not always satisfied
in real applications. Another classic approach requires
expanding the neural computation with Taylor around the
nominal value of the trained weights. A subsequent
linearized analysis follows which allows the researcher for
solving the sensitivity issue problem (Pichè, 1995). This
last approach has been widely used in the implementation
design of neural networks where the small perturbation
hypothesis abstracts small errors introduced by finite
precision representations of the weights (Dundar & Rose,
1995; Holt & Hwang, 1993). Again, the validity of the
analysis depends on the validity of the small perturbation
hypothesis.

Differently, other authors avoid the small perturba-
tion assumption by focusing the attention on very spe-
cific neural network topologies and/or by introducing
particular assumptions regarding the distribution of per-
turbations, internal neural variables and inputs as done
for Madalines neural networks (Stevenson, Winter, &
Widrow, 1990; Alippi, Piuri, & Sami, 1995).

Some other authors tackle the robustness issue differ-
ently by suggesting techniques leading to neural net-
works with improved robustness ability by acting on the
learning phase (e.g., see Alippi, 1999) or by introducing
modular redundancy (Edwards & Murray, 1998); though,
no robustness indexes are suggested there.
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A ROBUSTNESS ANALYSIS IN THE
LARGE

In the following, we consider a generic neural network

implementing the ( )xfxy ,ˆ)(ˆ θ=  function where θ̂  is the

weight vector of the trained neural network.
In several neural models, and in particular in those

related to system identification and control, the relation-
ship between the inputs and the output of the system is
captured by considering a regression vector ϕ, which
contains a limited time-window of actual and past inputs,
outputs, and, possibly, predicted outputs. Of particular
interest are those models which can be represented by

means of the model structures ( )ϕfty =)(ˆ  where function

( )⋅f  is a regression-type neural network, characterised by
Nϕ inputs, N

h
 non-linear hidden units and a single effec-

tive linear/non-linear output (Hassoun, 1995; Hertz, Krogh,
& Palmer, 1991; Ljung, 1987; Ljung, Sjoberg, &
Hjalmarsson, 1996).

The presence of a dynamic in the data can be modelled
by a suitable number of delay elements which may affect
inputs (time history on external inputs u(t)) system out-
puts (time history on y(t)) on predicted outputs (time

history on )(ˆ ty ) or residuals (t ime history on

)()(ˆ)( tytyte −= ). Where it is needed, y(t), )(ˆ ty  and e(t) are
vectorial entities, a component for each independent
distinct variable.

Several neural model structures have been suggested
in the literature, which basically differ in the regression
vector; examples are the NARMAX structures which can
be obtained by considering both past inputs and outputs:

[ ( ), ( 1), , ( ), ( 1), ,uu t u t u t n y t yϕ = − ⋅⋅⋅ − − ⋅⋅⋅

, ( ),..., ( 1), , ( )]y ey t n e t e t n− − ⋅⋅⋅ −

and the NOE ones which process only the past inputs and

ˆ ˆ[ ( ), ( 1), , ( ), ( 1), , ( )]u yu t u t u t n y t y t nϕ = − ⋅⋅ ⋅ − − ⋅⋅ ⋅ − .

Static neural networks, such as classifiers, can be ob-
tained by simply considering external inputs

[ ])(,),1(),( untututu −⋅⋅⋅−=ϕ .

We denote by ( ) ( )xfxy ,,ˆˆ ∆= ∆∆ θ  the mathematical

description of the perturbed computation and by ∆∈D⊆ℜp

a generic p-dimensional perturbation vector, a compo-
nent for each independent perturbation affecting the
network weights of model )(ˆ xy . The perturbation space D

is characterised in stochastic terms by providing the
probability density function pdf

D
.

To measure the discrepancy between ( )xy∆ˆ  and  y(x)

or )(ˆ xy  we consider a generic loss function U(∆). A
common example for U is the mean square error (MSE) loss
function

( ) ∑
=

∆−=∆
Nx

i
ii

x

xyxy
N

U
1

2))(ˆ)((
1

(1)

but a generic Lebesgue measurable loss function with
respect to D can be taken into account (Jech, 1978). The
formalization of the impact of perturbation on the perfor-
mance function can be simply derived as:

Definition: Robustness Index

We say that a neural network is robust at level γ  in D,

when the robustness index γ  is the minimum positive
value for which

γ≤∆)(U , D∈∆∀ . (2)

Immediately, from the definition of robustness index,
we have that a generic neural network NN1 is more robust

than another NN2 iff 21 γγ < ; the property holds indepen-
dently from the topology of the two neural networks.

The main problem related to the determination of the
robustness index γ  is that we have to compute

)(∆U , D∈∆∀  if we wish a tight bound. The γ -identifica-
tion problem is, therefore, intractable from a computa-
tional point of view if we relax all assumptions made in the
literature as we do. To deal with the computational aspect
we associate a dual probabilistic problem to (2):

Robustness Index: Dual Problem

We say that a neural network is robust at level γ  in D with

confidence η when γ  is the minimum positive value for
which

ηγ ≥≤∆ ))(Pr(U    holds  D∈∆∀ . (3)

The probabilistic problem is weaker than the determin-
istic one since it tolerates the existence of a set of pertur-
bations (whose measure according to Lebesgue is 1-η) for
which γ>∆)(u . In other words, not more than 100η% of
perturbations ∆∈D will generate a loss in performance
larger than γ . Probabilistic and deterministic problems
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