
 2949

�
0�����������
�����0�$

Brian Dobing
University of Lethbridge, Canada

Jeffrey Parsons
Memorial University of Newfoundland, Canada

Copyright © 2005, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

INTRODUCTION

The Unified Modeling Language, or the UML (Booch,
Jacobson & Rumbaugh, 1999), has rapidly emerged as a
standard language and notation for object-oriented mod-
eling in systems development, while the accompanying
Unified Software Development Process (Jacobson, Booch
& Rumbaugh, 1999) has been developed to provide meth-
odological support for application of the UML in software
development. The UML is a non-proprietary modeling
language managed by the Object Management Group, a
not-for-profit consortium, which also manages several
related modeling specifications. The UML has evolved
from its initial version, with UML 2.0 formally adopted by
the OMG in June 2003. This article is based on the UML
1.5 specifications (OMG, 2003), as those for UML 2.0 have
not been finalized. However, the role of use cases appears
to be essentially unaffected by the changes proposed for
UML 2.0.

The term “use case” was introduced by Jacobson
(1987) to refer to text document that outlines “a complete
course of events in the system, seen from a user’s per-
spective” (Jacobson, Christerson, Jonsson & Overgaard,
1992, p. 157). The concept resembles others being intro-
duced around the same time. Rumbaugh, Blaha, Premerlani,
Eddy, and Lorensen (1991), Wirfs-Brock, Wilkerson, and
Wiener (1990), and Rubin and Goldberg (1992) use the
terms “scenario” or “script” in a similar way. While use
cases were initially proposed for use in object-oriented
analysis and are now part of the UML, they are not
inherently object-oriented and can be used with other
methodologies.

BACKGROUND

A use case should have a clear goal and describe what
should typically happen (but not how it should happen).
Common examples would include a customer renting a
video, purchasing an item, withdrawing funds from an
account, and so forth. The use case also identifies the

main “actors” involved, which, in these examples, could
include the customer, employees (e.g., rental clerk), a
device (bank machine), and so forth.

The use case differs from typical structured require-
ments analysis tools that preceded it in two important
ways. First, the use case is largely text-based. Some refer
to them as use case narratives to clearly distinguish them
from use case diagrams, which provide an overview of the
use cases and actors in the system. Together, they form
the use case model. Structured analysis emphasized the
importance of graphical tools, such as work flow and data
flow diagrams. The UML has not abandoned diagrams; 13
are now included. The class, activity, communication
(previously collaboration), sequence, state machine (pre-
viously statechart) and use case diagrams play important
roles. But use cases are written in the customer’s lan-
guage, so that “users and customers no longer have to
learn complex notation” (Jacobson et al., 1999, p. 38).

Second, use cases focus on complete transactions
from the user’s perspective. In particular, use cases have
a goal, which comes from the goals of those who will be
using the system (Cockburn, 2001). This also helps facili-
tate communication with the system’s intended users. In
UML terminology, a use case is initiated by an actor,
usually a person in a particular role (e.g., cashier), but
sometimes an external system. Other actors may be in-
volved as well (e.g., customer). The use case provides a
complete view of the transaction, from initiation to achieve-
ment of the defined goal.

Consistent with an object-oriented approach, use cases
can also have generalizations and include/extend rela-
tionships. As with classes, generalization allows a child
use case to override the behavior of its parent use case in
certain situations. An include relationship is generally
used when the same steps are required by several use
cases, in order to avoid repetition. An included use case
is dependent on base use cases and “never stands alone”
(Booch et al., 1999, p. 221), although not everyone follows
this convention. An extend relationship exists when a
base use case incorporates another use case depending
on certain conditions.

2950

Use Cases and the UML

As discussed extensively in the next section, the
content and format of use cases vary widely among
published books and articles. In addition to the basic
narrative, use cases may contain initial sections that
specify assumptions, preconditions (that must be in place
before the use case is applicable), and triggers that initiate
the use case. At the conclusion, there may be specified
postconditions (that must be true when the use case
ends). Exceptions (or alternative paths) may also be
documented along with relevant business rules that gov-
ern behavior within the use case. None of these are part
of the UML 1.5 specifications (OMG, 2003), which con-
tains no sample use cases or suggestions on format, but
some or all of them may be useful in different situations.

ROLE OF USE CASES

Use cases have been all but universally embraced in
object-oriented systems analysis and development books
written since Jacobson et al. (1992). Despite this strong
endorsement, there are many variations on Jacobson’s
original theme. First, there is a difference in content. Use
cases, at least during the analysis phase, are generally
viewed as a conceptual tool. The use case should empha-
size “what” and not “how” (Jacobson et al., 1994, p. 146).
This suggests use cases should not mention technology
(e.g., Evans, 1999).

A review of use case examples shows that determining
when the “what” ends and the “how” begins is not always
easy. Brown (2002) interprets “what” to mean what the
system will do rather than the internal implementation.
Thus, his use cases include references to screen designs.
So do those of Satzinger and Orvik (1996, p. 126). Others,
such as Harmon and Watson (1998, p. 121) refer to specific
technology (salesperson’s laptop). And even Jacobson
et al. (1992, p. 162) refer to a display “panel,” “receipt
button” and “printer” in one of their examples. Some use
cases also include more detail on business rules. For
example, the IBM Object-Oriented Technology Center
(1997, p. 489) video store example includes the condition
that customers who are not members pay a deposit of
$60.00. In contrast, Kulak and Guiney (2000, p. 23, empha-
sis at source) state that use cases “should show the what
exclusively,” and their examples seem to follow this phi-
losophy. However, as Larman (2002, p. 75) notes, use
cases are not tied to object-oriented methodologies and
thus are technology-independent in that sense.

Second, there are several variations proposed for use
case formats. While the first use cases in Jacobson et al.
(1992) were written as a paragraph of text, most others
have adopted numbered steps. Soon after, Jacobson et al.
(1994, p. 109) did so as well.

Third, the granularity of use cases also varies from
coarse (few use cases) to fine (many). Most take a minimalist
approach. Jacobson et al. (1994, p. 105) suggest that use
cases should offer “measurable value to an individual
actor”. MacMaster (1997) argues that use cases be used
only for main system functions. But White (1994, p. 7)
states that “the collected Use Cases specify the complete
functionality of the system”. While Dewitz (1996) uses 11
use cases in her video store example, the IBM object-
oriented technology center (1997) has 24. Kulak and
Guiney (2000, p. 37) suggest that “most systems would
have perhaps 20 to 50 Use Cases and some small systems
even fewer”. But, as they later point out (p. 88), “there are
no metrics established to determine correct granularity”.
In contrast, Armour and Miller (2001, p. 244) claim that
large systems may have hundreds of use cases.

Fourth, the level of detail within each use case also
varies. For example, both Kulak and Guiney (2000, p. 125)
and Armour and Miller (2001, p. 125) recommend limiting
the length of the flow of events to two pages of text, but
the latter also note that some practitioners prefer a few
longer use cases to many short ones. Constantine and
Lockwood (2000) distinguish between “essential” use
cases, containing few if any references to technology and
user interface implementation, and “concrete” use cases
that specify the actual interactions.

Jacobson et al. (1999) advocate an iterative develop-
ment approach in which both the number of uses cases
and their level of detail increase as the life cycle progresses.
They suggest that only the most critical use cases (less
than 10%) be detailed in the first (inception) phase. As
analysis progresses and requirements become firmer,
additional use cases can be added and each can be
expanded to include considerably more detail. The ana-
lyst could move toward concrete use cases or simply
expand the detail within essential use cases. Some au-
thors have become quite specific in describing the differ-
ent levels. For example, Kulak and Guiney (2000) have
identified four levels. However, knowing where to start,
how far to go at each phase, and when to stop are clearly
critical issues not easily resolved.

To further complicate the issue, some of those who
favor fewer or less detailed use cases supplement them
with “scenarios”. Booch et al. (1999, p. 225) define sce-
narios as “basically one instance of a use case”. “Add a
customer” is a use case. Adding a specified customer with
a particular name, address, and so forth is a scenario. Some
references use scenarios to provide further detail on
exception handling and other special cases, for example,
customers with missing, improbable, or unusual data
(Bennett, Skelton & Lunn, 2001; Lockheed Martin, 1996).
However, the UML defines a scenario as “a specific
sequence of actions that illustrates behaviors” (OMG,

3 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/use-cases-uml/14724

Related Content

Call to Action: Developing a Support Plan for a New Product
William S. Lightfoot (2004). Annals of Cases on Information Technology: Volume 6 (pp. 406-417).

www.irma-international.org/chapter/call-action-developing-support-plan/44589

Reforming Public Healthcare in the Republic of Ireland with Information Systems: A Comparative

Study with the Private Sector
David Sammonand Frederic Adam (2008). Journal of Cases on Information Technology (pp. 17-40).

www.irma-international.org/article/reforming-public-healthcare-republic-ireland/3232

Inter-Team Negotiation Support, Coalition Formation, and Negotiation Outcomes: An Empirical

Study
Xiaojia Guo, John Limand Fei Wang (2010). Global, Social, and Organizational Implications of Emerging

Information Resources Management: Concepts and Applications (pp. 390-402).

www.irma-international.org/chapter/inter-team-negotiation-support-coalition/39252

The Effect of Level of Negotiation Support Systems and Cultural Diversity on Coalition

Formation: A Content Analysis
Xiaojia Guo, John Limand Fei Wang (2010). Information Resources Management: Concepts,

Methodologies, Tools and Applications (pp. 1452-1465).

www.irma-international.org/chapter/effect-level-negotiation-support-systems/54553

Information Systems Development and Business Fit in Dynamic Environments
Panagiotis Kanellis, Drakoulis Martakosand Peggy Papadopoulou (2003). Annals of Cases on Information

Technology: Volume 5 (pp. 250-261).

www.irma-international.org/article/information-systems-development-business-fit/44545

http://www.igi-global.com/chapter/use-cases-uml/14724
http://www.irma-international.org/chapter/call-action-developing-support-plan/44589
http://www.irma-international.org/article/reforming-public-healthcare-republic-ireland/3232
http://www.irma-international.org/chapter/inter-team-negotiation-support-coalition/39252
http://www.irma-international.org/chapter/effect-level-negotiation-support-systems/54553
http://www.irma-international.org/article/information-systems-development-business-fit/44545

