
DOI: 10.4018/JDM.2016040103

﻿

Journal of Database Management
Volume 27 • Issue 2 • April-June 2016

49

Predicting Software Abnormal State
by using Classification Algorithm
Yongquan Yan, School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China

Ping Guo, School of System Science, Beijing Normal University, Beijing, China

ABSTRACT

Software aging, also called smooth degradation or chronics, has been observed in a long running
software application, accompanied by performance degradation, hang/crash failures or both. The key
for software aging problem is how to fast and accurately detect software aging occurrence, which is a
hard work due to the long delay before aging appearance. In this paper, two problems about software
aging prediction are solved, which are how to accurately find proper running software system variables
to represent system state and how to predict software aging state in a running software system with a
minor error rate. Firstly, the authors use proposed stepwise forward selection algorithm and stepwise
backward selection algorithm to find a proper subset of variables set. Secondly, a classification
algorithm is used to model software aging process. Lastly, t-test with k-fold cross validation is used
to compare performance of two classification algorithms. In the experiments, the authors find that
their proposed method is an efficient way to forecast software aging problems in advance.

Keywords
Corrected T-Test, Feature Selection, Smooth Degradation, Software Aging

1. INTRODUCTION

It has been reported that 9% of overall business revenues (Bixby, 2010) is affected by application
performance problems. Taking the most popular web service as an example, when the web server
runs in a very long time, the system cannot respond quickly for the upcoming request. Even worse,
it may not respond any requests even if the workload level is modest. In generally, this performance
degradation does not show an instantaneous failure. This performance degradation phenomenon may
last a few days or even several weeks, if there is no any manual intervention. This phenomenon of
performance degradation, unplanned software outages, or suddenly failure is called software aging
(Cotroneo, Natella, Pietrantuono, & Russo, 2014), smooth degradation (Alencar, Santos, Santana,
& Fernandes, 2014), or chronics (Kavulya et al., 2012). In this work, we call it as software aging.

In fact, software aging is a consequence of problems with the software itself. When a fault is
activated, an error will appear as part of the internal state of the software system. When multiple
errors sufficiently accumulate and the proliferation of errors reaches the service interface of the
software system, the system will incur performance degradation, or even failure. Fig. 1 gives chain
of software failure.

In order to counteract problems caused by software aging, Huang, Kintala, Kolettis, and Fulton
(1995) proposed the technique of software rejuvenation, including occasionally ceasing software
application, removing accumulated error environments and then rebooting application. However,
execution of software rejuvenation can cause both direct and indirect costs during the downtime of

Journal of Database Management
Volume 27 • Issue 2 • April-June 2016

50

the system. In order to minimize the loss caused by rejuvenation, the implementation of software
rejuvenation need be executed based on the current state of the system. There are two core problems
which need be solved to identify system state and execute rejuvenation.

Problem 1: How to accurately find proper system and application variables to represent system state
for running software.

Problem 2: How to predict software aging state in a running software system with a minor error rate.

This paper, which gives a practice framework for forecasting software aging using a classification
algorithm, focuses on these two problems. Firstly, we propose two feature selection algorithms to
choose a subset of variables of operating system and application system. Secondly, a classification
algorithm called support vector machine (SVM) is carefully analyzed and used to model the software
aging process through the collected variables of an IIS web server that is a running commercial
server. Lastly, statistical analysis is used to analyze the performance between SVM and artificial
neural network (ANN).

2. RELATED WORK

Since software aging and rejuvenation have been proposed, performance degradation problems has
been reported on a variety of software systems, such as web server (Rahme & Xu, 2015), database
system (Cotroneo, Natella, & Pietrantuono, 2013), OLTP server, operating system (Kim, Chan, & Lee,
2014), middleware, and military system (Avritzer, Cole, & Weyuker, 2010). In order to get degradation
trend of running software system, Sen’s Slope Estimator was used in many researches. Zheng, Qi,
Zhou, and Zhang (2014) proposed a method called Modified Cox-Stuart Test and Iterative Hodrick-
Prescott Filter to overcome drawbacks of Sen’s Slope Estimator, such as over simple linear assumption,
sensitivity to noise. However, the method proposed by Zheng still cannot deal with drawbacks of
Sen’s Slope Estimator, since the proposed method is still linear method and software aging is only
judged by a single variable, which is not accurate. Jia et al. (2015) analyzed the relationship between
workload and available memory by using ANN. Yakhchi, Alonso, Fazeli, and Bitaraf (2015) used some
machine learning algorithms to predict time to resource exhaustion and found that artificial neural
network has the best forecast accuracy. However, time to resource exhaustion as a unique indicator
to software aging is too simple, since it is prone to outlier and fluctuation of data.

In addition, some scholars tried to predict software aging according to software state: normal or
abnormal. Magalhaes and Silva (2010) collected online bookstore data based on a TPC-W benchmark
using artificial workload and memory leak. Then ANN was used to predict software state. However, it
is not proper that labeling software aging state is only by a single variable response time. Meanwhile,
response time can not be accurately obtained since it is affected by many factors, such as the state
of network. Su, Chen, Qi, and Wu (2013) analyzed software aging problems in a HelixServer. In
order to find proper features to train SVM with radial basis function kernel, they use principal
component analysis (PCA) to choose features from a controlled dataset. However, PCA is limited
to the correlation of variables, which means that if the correlations of variables are weak, it cannot

Figure 1. Chain of software failure

15 more pages are available in the full version of this

document, which may be purchased using the "Add to Cart"

button on the publisher's webpage: www.igi-

global.com/article/predicting-software-abnormal-state-by-

using-classification-algorithm/165162

Related Content

Thirty Years Later: Some Reflections on Ontological Analysis in Conceptual

Modeling
Yair Wandand Ron Weber (2017). Journal of Database Management (pp. 1-17).

www.irma-international.org/article/thirty-years-later/181666

Information Extraction from Microarray Data: A Survey of Data Mining

Techniques
Alessandro Fiori, Alberto Grand, Giulia Bruno, Francesco Gavino Brundu, Domenico

Schioppaand Andrea Bertotti (2014). Journal of Database Management (pp. 29-58).

www.irma-international.org/article/information-extraction-from-microarray-data/109931

An Overview of Learning Object Repositories
Agiris Tzikopoulos, Nikos Manouselisand Riina Vuorikari (2009). Selected Readings

on Database Technologies and Applications (pp. 85-94).

www.irma-international.org/chapter/overview-learning-object-repositories/28547

Differential Learning Expert System in Data Management
R. Manjunath (2009). Handbook of Research on Innovations in Database

Technologies and Applications: Current and Future Trends (pp. 597-604).

www.irma-international.org/chapter/differential-learning-expert-system-data/20745

Multilevel Databases
Alban Gabillon (2005). Encyclopedia of Database Technologies and Applications (pp.

383-389).

www.irma-international.org/chapter/multilevel-databases/11177

http://www.igi-global.com/article/predicting-software-abnormal-state-by-using-classification-algorithm/165162
http://www.igi-global.com/article/predicting-software-abnormal-state-by-using-classification-algorithm/165162
http://www.igi-global.com/article/predicting-software-abnormal-state-by-using-classification-algorithm/165162
http://www.irma-international.org/article/thirty-years-later/181666
http://www.irma-international.org/article/information-extraction-from-microarray-data/109931
http://www.irma-international.org/chapter/overview-learning-object-repositories/28547
http://www.irma-international.org/chapter/differential-learning-expert-system-data/20745
http://www.irma-international.org/chapter/multilevel-databases/11177

