
DOI: 10.4018/IJSI.2017010101

Copyright © 2017, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Software Innovation
Volume 5 • Issue 1 • January-March 2017

OpenMP-Based Approach for High
Level C Loops Synthesis
Emna Kallel, CES Laboratory, ENIS School, University of Sfax, Sfax, Tunisia

Yassine Aoudni, CES Laboratory, ENIS School, University of Sfax, Sfax, Tunisia

Mohamed Abid, CES Laboratory, ENIS School, University of Sfax, Sfax, Tunisia

ABSTRACT

The complexity of embedded systems design is continuously augmented, due to the increasing
quantity of components and distinct functionalities incorporated into a single system. To deal with
this situation, abstraction level of projects is incessantly raised. In addition, techniques to accelerate
the code production process have appeared. In this context, the automatic code generation is an
interesting technique for the embedded systems project. This work presents an automatic VHDL code
generation method based on the OpenMP parallel programming specification. In order to synthesize
C code for loops into hardware, the authors applied the directives of OpenMP, which specifies
portable implementations of shared memory parallel programs. A case study focused on the use of
embedded systems for the DCT algorithm is presented in this paper to demonstrate the feasibility of
the proposed approach.

KeywORdS
C for Loops, Java Packages, OpenMP Directives, VHDL

1. INTROdUCTION

Recent trend in the modern System-On-Chip (SOC) design show that the highest performances
are mostly gained by integrating multiple-processors into one die. Because there are no standard
programming paradigms for SOCs (Liu, Feng, and Vipin Chaudhary, 2003), users are required to
write complex assembly language for SOCs. To manage this complexity, hardware design can be
performed at a higher level of abstraction. Therefore, high level synthesis tools and workbenches that
accelerate and simplify the design of these new parallel systems are requisite.

Over the last decade researchers have developed methodologies, algorithms and tools aiming
to generate hardware code from high level abstraction, like, parser generators, IP-Core generators,
or unified modeling language (UML) tools, rapidly generating production code and decreasing
design complexity (Li, Liu, Lin et al., 2015). Also, Program parallelization has become mainstream
research topic due to the invention of multicore processors (Sah, & Vaidya, 2014). For example,
DEFACTO (Buyukkurt, Guo, Zhi et al., 2004), SPARK (Diniz, Hall, Park et al., 2001), DWARV
(OpenMP Application Program Interface, 2016) and ROCCC (Gupta, Gupta, Dutt et al., 2004) projects
emphasize parallelizing transformations and some also address memory access optimizations. Also,
in recent years, several commercial tools that generate hardware from HLL input also appeared (e.g.
Catapult-C (Riversite optimizing compiler for configurable computing, 2016), Impulse-C (Taft, Duff,

1

International Journal of Software Innovation
Volume 5 • Issue 1 • January-March 2017

2

Brukardt et al, 2007)). While these tools aim at simplifying and improving the hardware designer’s
tasks, their designs remains difficult and needs more expertise in this domain. So, using a standard
programming model for the new parallel architecture is necessary to simplify these complex systems.

OpenMP is an industrial standard for shared memory parallel programming with growing
popularity. It consists of an API enabling shared memory multiprocessing programming in C, C++
and Fortran. In other words, OpenMP API is a portable, scalable model that provides developers
with a simple user-friendly interface for working with parallel applications on a wide range of
platforms, from embedded systems to multi-core and shared-memory systems (B. Chapman et al,
2008). The standard API consists of a set of compiler directives to express parallelism, work sharing,
and synchronization. The OpenMP provides lightweight threads and a good solution to interact with
each multiprocessor computer inside various processors (Liu, Wu, Lu et al., 2015). So, it’s beneficial
to incorporate high-level standardization like OpenMP to improve SOC design effectiveness, and
reduce the burden for parallel programmers as well.

In our research project we aim to increase the design abstraction levels by automatically generating
hardware from OpenMP code to simplify and accelerate the SoC design process. In this generation
process there are multiple defy to be overcome. These defy range from analyzing the high-level
(HL) constructs to mapping them to the hardware. In order to lead to optimal hardware design, an
efficient HL code analysis is needed. In this work, we introduce a novel JAVA-based method to parse
the entered C/OpenMP code and automatically extract its different parallel constructs to be updated
with the hardware components.

The next section describes the related work. Section 3 presents the proposed OpenMP parsing
process. Section 4 presents the VHDL generation method. Section 5 presents experiments and results.
Finally, we end up with a conclusion and future work.

2. ReLATed wORK

Due to the fame of OpenMP and its powerful model allowing an easy description of parallel high-
performance applications, some works have recently addressed the generation of hardware components
from OpenMP programs. Indeed, a number of high level synthesis tools have been developed based
on OpenMP specification. For example, the OpenMP to HandelC translator described in (Leow,
Ng, & Wong, 2006) is based on a project called C-Breeze. C-Breeze, an infrastructure for building
C compilers (Guyer, Jimenez, & Lin, 2001), parses a C program into an abstract syntax tree. The
C-Breeze lexer and parser have been modified to accept OpenMP directives and new abstract syntax
tree nodes were added to represent most OpenMP constructs. The abstract syntax tree is translated
into a HandelC. The approach misses explicit memory hierarchy limiting the available memory to
the resources available on chip. So that, it is hard to maintain the shared memory in an efficient and
scalable manner. In this work, here are no sufficient provided details on synchronization, even as
dynamic scheduling and nested parallelism. Furthermore, only the integer data type is available for
use in the OpenMP description. Also, in (Burgio, Marongiu, Heller et al., 2012), HW architecture is
generated from OpenMP specification, based on GCC OpenMP (GOMP) compiler (GOMP, 2016).
Custom directives are proposed to specialize code regions for execution on parallel cores, accelerators,
or a mix of the two. Despite the reliability of this work, there is no concrete realization like streamlining
instantiation and mapping of HW tasks on the accelerated platform, such as an FPGA.

Other works cannot be directly applied to the hardware synthesis process. For example,
C2SystemC tool (Dziurzanski, Bielecki, Trifunovic et al., 2006) is developed to transform an OpenMP
program into a functionally equivalent SystemC description. It is based on the Cetus source-to-
source translator framework (Lee, Johnson, & Eigenmann, 2003), which is a set of extensible classes
particularly suited for source-to-source translators. The translator is implemented in Java language.

14 more pages are available in the full version of this

document, which may be purchased using the "Add to Cart"

button on the publisher's webpage: www.igi-

global.com/article/openmp-based-approach-for-high-level-c-

loops-synthesis/169914

Related Content

PageRank and HodgeRank on Ethereum Transactions: A Measure for Social

Credit
Huu-Dung Doand Thuat Do (2023). International Journal of Software Innovation (pp.

1-13).

www.irma-international.org/article/pagerank-and-hodgerank-on-ethereum-transactions/315737

Using ECG Authentication for Biometrics in Smart Cities
Rohit Rastogi, Aditi Mittal, Ishanki Vermaand Pallavit Saxena (2023). International

Journal of Systems and Software Security and Protection (pp. 1-26).

www.irma-international.org/article/using-ecg-authentication-for-biometrics-in-smart-cities/324078

Teaching Software Engineering in a Computer Science Program Using the

Affinity Research Group Philosophy
Steve Roach (2009). Software Engineering: Effective Teaching and Learning

Approaches and Practices (pp. 136-156).

www.irma-international.org/chapter/teaching-software-engineering-computer-science/29597

Use of Framework Synthesis to Identify the Factors Considered for Five

Popular Prioritisation Approaches
Zoe Hoy (2022). Emerging Technologies for Innovation Management in the Software

Industry (pp. 157-167).

www.irma-international.org/chapter/use-of-framework-synthesis-to-identify-the-factors-

considered-for-five-popular-prioritisation-approaches/304543

Combining Requirements Engineering and Agents
Angélica de Antonioand Ricardo Imbert (2005). Requirements Engineering for

Sociotechnical Systems (pp. 68-83).

www.irma-international.org/chapter/combining-requirements-engineering-agents/28403

http://www.igi-global.com/article/openmp-based-approach-for-high-level-c-loops-synthesis/169914
http://www.igi-global.com/article/openmp-based-approach-for-high-level-c-loops-synthesis/169914
http://www.igi-global.com/article/openmp-based-approach-for-high-level-c-loops-synthesis/169914
http://www.irma-international.org/article/pagerank-and-hodgerank-on-ethereum-transactions/315737
http://www.irma-international.org/article/using-ecg-authentication-for-biometrics-in-smart-cities/324078
http://www.irma-international.org/chapter/teaching-software-engineering-computer-science/29597
http://www.irma-international.org/chapter/use-of-framework-synthesis-to-identify-the-factors-considered-for-five-popular-prioritisation-approaches/304543
http://www.irma-international.org/chapter/use-of-framework-synthesis-to-identify-the-factors-considered-for-five-popular-prioritisation-approaches/304543
http://www.irma-international.org/chapter/combining-requirements-engineering-agents/28403

