
826 Category: M-Business and M-Commerce

Secure Agent Data Protection for E-Commerce
Applications
Sheng-Uei Guan
Brunel University, UK

Copyright © 2007, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

INTRODUCTION

One hindrance to the widespread adoption of mobile agent
technology (Johansen et al., 2002) is the lack of security.
SAFER, or Secure Agent Fabrication, Evolution, and Roam-
ing, is a mobile agent framework that is specially designed
for the purpose of electronic commerce (Zhu, Guan, Yang,
& Ko, 2000; Guan & Yang, 1999, 2003; Yang & Guan,
2000). By building strong and efficient security mechanisms,
SAFER aims to provide a trustworthy framework for mobile
agents. While such an agent transport protocol provides for
the secure roaming of agents, there are other areas related
to security to be addressed.

Agent integrity is one such area crucial to the success of
agent technology. The integrity protection for agent code is
relatively straightforward. A more complex code integrity
scheme to handle code-on-demand is also proposed in Wang
et al. (2002). Agent data, however, is dynamic in nature and
will change as the agent roams from host to host. Despite the
various attempts in the literature (Chionh, Guan, & Yang,
2001), there is no satisfactory solution to the problem so far.
Some of the common weaknesses of the current schemes
are vulnerabilities to revisit attack and illegal modification
(deletion/insertion) of agent data.

DESCRIPTION OF SADIS

SADIS has been designed based on the following assump-
tions:

1. Entities including agents, agent butlers, and hosts
should have globally unique identification number
(IDs).

2. Each agent butler and host should have a digital cer-
tificate that is issued by a trusted CA. These entities
will be able to use the private key of its certificate to
perform digital signatures and encryption.

3. While the host may be malicious, the execution en-
vironment of mobile agents should be secure and the
execution integrity of the agent can be maintained.

4. Entities involved are respecting and cooperating with
the SADIS protocol.

Key Seed Negotiation Protocol

The proposed key seed negotiation protocol defines the
process for key seed negotiation, as well as session key
and data encryption key derivation. When an agent first
leaves the butler, the butler generates a random initial key
seed, encrypts it with the destination host’s public key, and
deposits it into the agent before sending the agent to the
destination host. It should be noted that agent transmission
is protected by the agent transport protocol (Guan & Yang,
2002), thereby protecting the system from being compro-
mised by malicious hosts.

The key seed negotiation process is based on the Dif-
fie-Hellman (DH) key exchange protocol (Schneier, 1996)
with a variation. The agent will first generate a private DH
parameter a and its corresponding public parameter x. The
value x, together with the ID of the destination host, will
be encrypted using a communication session key and sent
to the agent butler.

The agent butler will decrypt the message using the
same communication session key (to be discussed later).
It too will generate its own DH private parameter b and its
corresponding public parameter y. With the private param-
eter b and the public parameter x from the agent, the butler
can derive the new key seed and use it for communications
with the agent in the new host. Instead of sending the public
parameter y to the agent as in normal DH key exchange, the
agent butler will encrypt the value y, host ID, agent ID, and
current timestamp with the destination host’s public key to
get message M. Message M will be sent to the agent after
encrypting with the communication session key.

M = E(y + host ID + agent ID + timestamp, HpubKey)

At the same time, the agent butler updates the agent’s
itinerary and stores the information locally. This effectively
protects the agent’s actual itinerary against any hacking
attempts related to itinerary, thereby protecting against the
data deletion attack.

When the agent receives the double-encrypted DH public
parameter y, it can decrypt with the communication session
key. Since the decrypted result M is parameter y and some
other information encrypted with the destination host’s public
key, the current host will not be able to find out the value
of y and thus find out the new key seed to be used when the

 827

Secure Agent Data Protection for E-Commerce Applications

S
agent reaches the destination host. It should be noted that
this does not prevent the host from replacing M with its own
version M’ with the same host ID, agent ID, and timestamp,
but different y. The inclusion of host ID, agent ID inside M
can render such attack useless against SADIS. A detailed
discussion on this attack can be found in the security analysis
section of this article.

Subsequently, the agent will store M into its data seg-
ment and requests the current host to send itself to the
destination host using the agent transport protocol (Guan
& Yang, 2002).

Upon arriving at the destination host, the agent will be
activated. Before it resumes normal operation, the agent will
request the new host to decrypt message M. If the host is
the right destination host, it will be able to use the private
key to decrypt message M and thus obtain the DH public
parameter y. As a result, the decryption of message M not
only completes the key seed negotiation process, but also
serves as a means to authenticate the destination host. Once
the message M is decrypted, the host will verify that the agent
ID in the decrypted message matches the incoming agent,
and the host ID in the decrypted message matches that of
the current host. In this way, the host can ensure that it is
decrypting for a legitimate agent instead of some bogus agent.
If the IDs in the decrypted messages match, the decrypted
value of y is returned to the agent.

With the plain value of y, the agent can derive the key
seed by using its previously generated private parameter a.
With the new key seed derived, the key seed negotiation
process is completed. The agent can resume normal opera-
tion in the new host.

Whenever the agent or the butler needs to communicate
with each other, the sender will first derive a communication
session key using the key seed and use this communication
session key to encrypt the message. The receiver can make
use of the same formula to derive the communication session
key from the same key seed to decrypt the message.

The communication session key KCSK is derived using
the formula below:

KCSK = Hash(key_seed + host ID + seqNo)

The sequence number is a running number that starts
with 1 for each agent roaming session, and is reset to 1
whenever the agent reaches a new host. Each message com-
municated will therefore be encrypted using a different key.
As this means that the butler and agent will not be able to
communicate if messages are lost without detection, SADIS
makes use of TCP/IP as a communication mechanism. Once
the communication is re-established after a send failure, the
sender will resend the previous message (encrypted using
the same communication session key). The agent and the
butler can therefore synchronize on communication session
key calculations.

The agent encrypts host information with a data en-
cryption key KDEK. The data encryption key is derived as
follows:

KDEK = Hash(key_seed + hostID)

The details on encryption will be discussed in the next
section.

Data Integrity Protection Protocol

The key seed negotiation protocol lays the necessary founda-
tion for integrity protection by establishing a session-based
key seed between the agent and its butler. Digital certificates
also help protect the agent data integrity.

Our data integrity protection protocol comprises two parts:
chained signature generation and data integrity verification.
Chained signature generation is performed before the agent
leaves the current host. The agent gathers data provided by
the current host di and construct Di as follows:

Di = E(di + IDhost + IDagent + timestamp, kDEK)

or

Di = di + IDhost + IDagent + timestamp

The inclusion of host ID, agent ID, and timestamp is
to protect the data from possible replay attack, especially
when the information is not encrypted with the data encryp-
tion key, thereby creating an unambiguous memorandum
between the agent and the host. The construction of Di also
gives the flexibility to encrypt the data or keep it plain. After
constructing Di, the agent will request the host to perform a
signature on the following:

ci = Sig(Di + ci-1 + IDhost + IDagent + timestamp, kpriv)

where c0 is the digital signature on the agent code by its
butler.

One design focus of SADIS is not only to detect data
integrity compromise, but more importantly to identify
malicious hosts. To achieve malicious host identification, it
is an obligation for all hosts to verify the incoming agent’s
data integrity before activating the agent for execution. In
the event of data integrity verification failure, the previous
host will be identified as the malicious host.

Data integrity verification includes the verification of
all the previous signatures. The verification of signature c0
ensures agent code integrity; the verification of ci ensures
data provided by host hi is intact. If any signature failed the
verification, the agent is considered compromised.

While the process to verify all data integrity may seem
to incur too much overhead and also seem somewhat redun-

4 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/secure-agent-data-protection-commerce/17182

Related Content

Heuristic Based User Interface Evaluation of Mobile Money Application: A Case Study
Bimal Aklesh Kumarand Shamina Hussein (2014). International Journal of Handheld Computing Research (pp.

75-86).

www.irma-international.org/article/heuristic-based-user-interface-evaluation-of-mobile-money-application/124961

Fault Tolerant Cloud Systems
Sathish Kumarand Balamurugan B (2019). Advanced Methodologies and Technologies in Network

Architecture, Mobile Computing, and Data Analytics (pp. 171-190).

www.irma-international.org/chapter/fault-tolerant-cloud-systems/214613

SDLC Phases of a Mobile Application
Drin Hoti, Monika Malokuand Klinton Gashi (2023). Designing and Developing Innovative Mobile Applications

(pp. 232-249).

www.irma-international.org/chapter/sdlc-phases-of-a-mobile-application/322073

Remote Robot-Sensor Calibration Service: Towards Cyber Physical Robotics
Tapio Heikkilä, Tuomas Seppälä, Timo Kuulaand Hannu Karvonen (2019). International Journal of Mobile

Devices, Wearable Technology, and Flexible Electronics (pp. 15-36).

www.irma-international.org/article/remote-robot-sensor-calibration-service/268889

A Proposed Intelligent Denoising Technique for Spatial Video Denoising for Real-Time Applications
Amany Sarhan, Mohamed T. Faheemand Rasha Orban Mahmoud (2010). International Journal of Mobile

Computing and Multimedia Communications (pp. 20-39).

www.irma-international.org/article/proposed-intelligent-denoising-technique-spatial/40979

http://www.igi-global.com/chapter/secure-agent-data-protection-commerce/17182
http://www.igi-global.com/chapter/secure-agent-data-protection-commerce/17182
http://www.irma-international.org/article/heuristic-based-user-interface-evaluation-of-mobile-money-application/124961
http://www.irma-international.org/chapter/fault-tolerant-cloud-systems/214613
http://www.irma-international.org/chapter/sdlc-phases-of-a-mobile-application/322073
http://www.irma-international.org/article/remote-robot-sensor-calibration-service/268889
http://www.irma-international.org/article/proposed-intelligent-denoising-technique-spatial/40979

