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GIS AND SPATIAL ANALYSIS: AN
OVERVIEW

GIS can be found in specialized literature such as the GIS 
International Journal, expressing the idea that spatial 
analysis can somehow be useful. GIS is successful not 
only because it integrates data, but it also enables us to 
share data in different departments or segments of our 
organizations. I like this notion of putting the world’s 
pieces back together again (ArcNews, 2000). “GIS 
is simultaneously the telescope, the microscope, the 
computer and the Xerox machine of regional analysis 
and the synthesis of spatial data” (Abler, 1988). “GIS 
is a system of hardware, software and liveware imple-
mented with the aim of storing, processing, visualizing 

are also possible” (Painho, 1999). “GIS is a tool for 
revealing what is otherwise invisible in geographical 

,
2001). Certainly, GIS is not a graphic database.

According to Unwin (1997) and Bailey (1994), 
“the spatial analysis concept has nothing to do with 
the general ability to describe spatial data, generally 
incorporated in all commercial GIS but it presents the 
challenge, given a spatial pattern, to explore it with 
an appropriate model and represent it with a graphical 
display.” Certainly, to describe is not to explore. As 

work, a search for clues and evidence, while describing 
is a job of judgment, a job of analyzing and evaluat-
ing clues.”

deterministic processes like groundwater movement and 
environmental quality management based on economic 
criteria such as land use and transportation. It seems 
that geographical analysis comprises GIS (an applied 
computer-science view), spatial statistics including 
uncertainty issues (spatial autocorrelation, spatial au-
toregression, Kriging, stochastic simulation, morpho-
logic geostatistics, and space-time processes), classical 
spatial statistics, remote detection, and deterministic 
spatial analysis such as optimization routing, B-Splines, 
overlay, buffering and DEM (Digital Elevation Model) 
operations (cartographic modeling).

Recently, Wikle and Cressie (1999) reported new 
advances in spatiotemporal prediction for large datasets 

-
sion in an empirical method of moments implementa-
tion, while Hopkins et al. (1999) mentioned Kriging 
use for (x,y,t) ozone concentration estimation with 
GMS®. It is therefore implicit that spatial analysis is a 
GIS component to support decision making for solving 
problems with a spatial component.

SPATIAL AUTOCORRELATION

The role of this spatial component holds two major 
implications for the way statistical analysis should be 
carried out. Location leads to spatial dependence (cor-
relation or variation that each neighbor holds in relation 
to a particular point) and spatial heterogeneity (clus-
tering, concentration, or proportion of neighborhood 

Tobler’s First Law of Geography: “everything is related 
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to everything but closer things tend to be more related”. 
Since regional differentiation respects the intrinsic 
uniqueness of each location, spatial autocorrelation can 
be viewed, hence, as a map pattern descriptor.

Classical statistics offer a wide range of inferential 
methods based on restricted assumptions. The 95% con-

mean and standard deviation are only valid if samples 
are independent and homocedastic with uncorrelated 
error. Another classical approach to test if there is an 
association between two variables where each variable 

2)

large independent random samples. Classical statistical 
tests for the difference between the means of two sub-
populations are based on independent random samples 
and normal distribution assumptions. Furthermore, 
linear and multiple regression models, including the 
global F and individual t-Student tests, assume a lin-
earity relationship between the random variables and 
the independency, homocedasticity, and normality of 

ordinary least squares estimator is the best unbiased 

Yet, spatial data do not follow statistician’s rules, and 

and Layne (1999) point out, “spatial autocorrelation is 
quite often positive with a correlation range between 0.3 
and 0.5.” Spatial ANOVA of SpaceStat® regards spatial 
differentiation as a regression model whose spatial 
W matrix can be included, and explanatory variables 
are converted to categorical ones such as North/South 
subregions. “This assumption of indicator variables in 
the form of a dummy variable can measure the differ-
ence between the sub-region mean and the overall one” 
(Anselin, 1992). A positive and high t-Student indicates 
a strong discrepancy among subregions. Furthermore, 
“if spatial residual dependency exists then biased esti-
mates can be assumed and a spatial lag autocorrelation 
regression can be applied” (Anselin, 1992).

“Autocorrelation damages the ability to perform 
standard statistical hypothesis tests because the con-

product moment is narrow inducing, thus, biased con-

“The estimator standard errors are not minimized and 

Hosking, 1986; Ebdon, 1998). This occurs because 
new observations under the lack of independence do 
not each bring one full degree of freedom since the 
observer holds some prior knowledge at new locations 

approaches 1, the effective degrees of freedom approach 
0. As spatial autocorrelation approaches 0, the effective 
degrees of freedom tend to the total sampling number. 
As spatial autocorrelation approaches -1, the effective 
degrees of freedom increase beyond the number of 
observations.

Fewer samples are therefore needed as positive 
spatial autocorrelation increases, a possible reduction 
solution for the huge spatial data computation issue. 
Under this viewpoint, there is a better than equal chance 
of predicting neighboring values if this information 
is already available. As spatial autocorrelation also 
decreases, error prediction increases. Spatial autocor-
relation is the spine of spatial interpolation. If someone 
records downtown air pollution in Madrid, Spain, 
monitoring devices will report the same levels adding 
almost no new information to the previous samples. 
Information redundancy is the logical consequence with 
autocorrelated georeferenced data because samples 
collected for two juxtaposed points in space tend to 
represent essentially the same information. Thus, spatial 

but masked information content in spatial data.
“If spatial autocorrelation exists, the standard er-

ror of the linear estimators will not be minimized, the 

2, t and F tests will 
no longer be valid and the residuals may be highly cor-
related” (Dutilleul, 1993). The independent zero spatial 

if strong residual autocorrelation exists, then ordinary 
least squares (OLS) inference breaks down because 
near things hold the same weight as distant ones.
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standard deviation, but with positive n correlated sam-
ples, Cressie (1993) proved that the previous interval 
equals [
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variance of the mean with a population of n samples is 
not n but 
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