
462

Chapter 2.16
Architecture, Specification,

and Design of
Service-Oriented Systems

Jaroslav Král
Charles University, Czech Republic

Michal Žemlička
Charles University, Czech Republic

Copyright © 2008, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Abstract

Service-oriented software systems (SOSS) are
becoming the leading paradigm of software
engineering. The crucial elements of the require-
ments specification of SOSSs are discussed as
well as the relation between the requirements
specification and the architecture of SOSS. It is
preferable to understand service orientation not
to be limited to Web services and Internet only. It
is shown that there are several variants of SOSS
having different application domains, different
user properties, different development processes,
and different software engineering properties. The
conditions implying advantageous user properties
of SOSS are presented. The conditions are user-
oriented interfaces of services, the application of
peer-to-peer philosophy, and the combination of
different technologies of communication between
services (seemingly the obsolete ones inclusive),
and autonomy of the services. These conditions

imply excellent software engineering properties
of SOSSs as well. Service orientation promises
to open the way to the software as a proper en-
gineering product.

Introduction

Service orientation (SO) is becoming the cen-
tral topic of software engineering. There is an
explosive growth in the number of conferences,
products, and articles discussing and using the
principles of SO and service-oriented architec-
tures (SOA). Service-oriented software systems
(SOSS) are of different types depending on the
character of the functions the system provides, the
system environment (for example, e-commerce
or a decentralized international enterprise), and
the way the system is developed. The common
property of SOSS is that their components behave
like the services in real life mass service systems.

 463

Architecture, Specification, and Design of Service-Oriented Systems

The SOSS must then be virtual peer-to-peer (p2p)
networks of autonomous components (services).
The services can have various properties; they
need not be Web services in the sense of W3C
(2002) and need not therefore use standard com-
munication protocols, compare Barry and As-
sociates (2003) and Datz (2004).

We shall show that the software engineering
properties as well as the user-oriented properties
of any SOSS strongly depend on the properties
of the service interfaces and that user interfaces
of the system should be implemented as specific
services (peers of the network) as well. All these
issues are related to the architecture of the sys-
tem. We will discuss how the properties of the
architecture influence the set of feasible func-
tions, development (especially the requirements
specifications), feasible development techniques
(for example, agile ones), standards, politics of IT
management, and marketing strategies of software
vendors and/or system integrators (Figure 1). The
feasible functions of SOSSs include the functions
important for user top-management.

Feasible functions of any large system depend
on its architecture. The decision as to what archi-
tecture is to be used must therefore be formulated
in early stages of the system life cycle. On the
other hand, the structure, techniques, and content
of requirements specifications are influenced by
the properties of the system architecture and
the details of its implementation. We shall show
that SOSS should use a combination of various
techniques developed during the software history

(for example, message passing, object orientation,
common databases, and, sometimes, batch-orient-
ed systems). All these issues should be addressed
in the specifications of SOSSs. SO is a paradigm
new for many software people. It implies some
problems with the application of SO.

Peer-to-Peer
Information Systems (P2PIS)

Large information systems must often be devel-
oped as a network of loosely coupled autonomous
components—services (possibly information
systems) integrated using peer-to-peer principle
(further P2PIS). The change of the architecture
should be accompanied by changes in require-
ments specification that should reflect the service-
oriented structure of the system.

The specification of P2PIS starts from the
specification of system user interface (portal)
and from the specifications of the services. The
specification of services starts from the defini-
tion of their interfaces. It can be accompanied by
specification of the services of the infrastructure
(message formats, communication protocols, mid-
dleware services, in general). Services in P2PIS
can be newly developed applications, encapsulated
legacy systems, or third party products. P2PIS
enables new types of requirements (for example,
the requirement that a P2PIS should support de-
centralized and flexible organization of a global
enterprise, see Král & Žemlička, 2003) and makes
achievable software engineering properties like
reusability, flexibility, openness, maintainability,
the use of legacy systems and third party products,
or the reduction of development costs and dura-
tion. Experience shows that such systems can be
extremely stable (Král, 1995).

There are two main variants of P2PIS. The
first one is used in e-commerce where the ser-
vice starting a communication must first look for
communication partners. The partners must offer
their interfaces (typically specified by WSDL).

Figure 1. Central role of system architecture

13 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/architecture-specification-design-service-oriented/18202

Related Content

Introducing the Check-Off Password System (COPS): An Advancement in User Authentication

Methods and Information Security
Merrill Warkentin, Kimberly Davisand Ernst Bekkering (2008). End-User Computing: Concepts, Methodologies,

Tools, and Applications (pp. 81-97).

www.irma-international.org/chapter/introducing-check-off-password-system/18173

Software Selection: A Knowledge-based System Approach
D. G. Dologite (1990). Journal of Microcomputer Systems Management (pp. 15-25).

www.irma-international.org/article/software-selection-knowledge-based-system/55657

Learning to Use IT in the Workplace: Mechanisms and Masters
Valerie K. Spitler (2007). Contemporary Issues in End User Computing (pp. 292-323).

www.irma-international.org/chapter/learning-use-workplace/7041

Protective Measures and Security Policy Non-Compliance Intention: IT Vision Conflict as a

Moderator
Kuo-Chung Changand Yoke May Seow (2019). Journal of Organizational and End User Computing (pp. 1-21).

www.irma-international.org/article/protective-measures-and-security-policy-non-compliance-intention/216969

Open Learner Modelling as the Keystone of the Next Generation of Adaptive Learning

Environments
Rafael Morales, Nicolas Van Labeke, Paul Brnaand María Elena Chan (2009). Intelligent User Interfaces:

Adaptation and Personalization Systems and Technologies (pp. 288-312).

www.irma-international.org/chapter/open-learner-modelling-keystone-next/24481

http://www.igi-global.com/chapter/architecture-specification-design-service-oriented/18202
http://www.igi-global.com/chapter/architecture-specification-design-service-oriented/18202
http://www.irma-international.org/chapter/introducing-check-off-password-system/18173
http://www.irma-international.org/article/software-selection-knowledge-based-system/55657
http://www.irma-international.org/chapter/learning-use-workplace/7041
http://www.irma-international.org/article/protective-measures-and-security-policy-non-compliance-intention/216969
http://www.irma-international.org/chapter/open-learner-modelling-keystone-next/24481

