
 S

7609

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Category: Systems and Software Engineering

DOI: 10.4018/978-1-5225-2255-3.ch662

The What, How, and When
of Formal Methods

INTRODUCTION

Formal Methods (FM) is an area of Software Engi-
neering. They comprise a collection of methodolo-
gies and related tools, employing a mathematical
basis –as do most engineering disciplines–, to
construct its products. Although FM are part of
Software Engineering, they extend their scope to
the development not only of software products but
also of hardware systems.

The goal of this article is to give answers to
questions such as what are Formal Methods, how
are Formal Methods implemented, how are they
used in Software Engineering, when should they
be used, among other related questions.

The chapter starts answering the question of
what are FM; also the aims of FM are stated at
the same time that their main characteristics are
presented.

An example that shows how FM can be used
to help specifying software requirements as well
as the rest of the stages in a software development
process is given as answers to the questions how
are FM implemented and how FM are used in
Software Engineering.

A discussion about when they should be used,
explaining why they should be employed when
the software system is required to be as secure
and reliable as possible and how they can also be
used as a complement to traditional development
methods, is also provided.

A section on the state of the art in FM, provid-
ing an analysis of Lightweight FM and the grow-

ing impact that Model Checking is having in the
software and hardware industry as an automatic
FM for system verification, is presented. Finally, a
discussion on the use of automatic analyzers like
Alloy, which replace conventional analysis based
in theorem proof by a “non-complete” analysis
based in the examination of cases, is also given.

BACKGROUND

The ‘What’ of FM

What Are Formal Methods

FM contain a wide range of methods and related
tools oriented to the production of secure and reli-
able software and hardware systems by employing
a logic-mathematical basis.

As traditional development methods, FM
consist of a set of techniques and supporting tools
to assists developers during the whole software
development process. The fundamental difference
with traditional methods is that FM are based on
mathematics and formal logic leading to unam-
biguous specifications, where desired properties
of a system under development can be formally
expressed and verified.

The adoption of FM makes possible the
specification and the verification of software and
hardware systems. They provide the mathematical
tools to develop new concrete formal specifications
and, eventually, executable code from abstract

Aristides Dasso
Universidad Nacional de San Luis, Argentina

Ana Funes
Universidad Nacional de San Luis, Argentina

The What, How, and When of Formal Methods

7610

formal specifications, where all the development
steps can be formally verified.

Therefore, in contrast to traditional develop-
ment methods, FM use mathematical proofs as a
complement to software testing in order to verify
the correctness of the system under development.

There are a number of different Formal Meth-
ods, each having its own notation, methodology
and supporting tools; a comprehensive list of FM
can be found in Formal Methods Wiki (Bowen).
Formal notations or formal specification lan-
guages are used to produce formal specifications
of software and hardware systems. There are dif-
ferent styles in formal notations, and there also
are different degrees of rigor in development.
Formal specifications can be written either using
abstract or concrete style. Some formal specifica-
tion languages adopt a property-oriented style,
allowing the creation of algebraic specifications,
where the desired properties of the system under
development are given by axioms, in a purely
declarative way. This kind of specifications is
called algebraic because specifications are seen
like heterogeneous algebras. A different style for
specifications is the use of model-based notations,
which make use of concrete data types (integers,
reals, sets, list, etc.). They are more concrete
than property-oriented specifications. However,
in general, formal specification languages favors
abstraction, being oriented to answer the question
what are the software requirements of a system
more than how the requirements are going to be
implemented, i.e. they are oriented to describe
what a system should do more than how it should
be done.

Formality in the use of FM can go from the
maximum degree of rigor, i.e. the use of formal
specification and formal verification of the whole
system to the use of formalizations for require-
ments specification only.

Some confusion can arise with the use of
terms formal language, formal notation, formal
system and formal method. In (Alagar, V. S. &
Periyasami, K., 2011) the differences are clearly

stated. In Table 1 a synoptic view of the differ-
ences between those terms is shown.

A formal notation is a language that has both
its syntax and semantics formally defined. Speci-
fication languages used in FM and programming
languages are formally defined by their syntax
and semantics. Syntax drives the validation of the
language constructs. Strictly speaking the syntax
of a language is given by the formal grammar of
the language. There are a number of methods to
do this, among them BNF (Backus – Naur Form).
These methods are widely used to represent the
syntax of programming languages, specification
languages, etc.

Semantics, on the other hand, is a way of as-
sociating meanings to the language’s valid con-
structs. Roughly speaking it can be said that
given a language  , the semantics of  can be
represented by a pair U �I,() , where  is the
universe of values, i.e. the set of all possible val-
ues (numbers, characters, Boolean values, etc.),
and I �L U: → is an interpretation function that
assigns to each construct of the language  a
value in the universe of values  .

There are different styles for giving language
semantics. Operational semantics is concrete; it
may define an abstract machine, and is not well
suited for proofs. In Denotational semantics a
denotation (usually a mathematical object) is given
to each phrase or construct of the language; since
it is abstract, it is well suited for proofs; Axiomatic
semantics is also abstract; here each phrase or

Table 1. A view of formal methods, formal systems
and formal languages

Formal
Method

Formal
System

Formal
Notation

Formal Language:
formal syntax + formal
semantics.

Proof system: axioms + inference
rules

Automatic tool support for specification, proof
assistance, code generation, etc.

11 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/the-what-how-and-when-of-formal-

methods/184456

Related Content

A Model for Connected E-Government in the Digital Age
Qiuyan Fan (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp. 3602-3611).

www.irma-international.org/chapter/a-model-for-connected-e-government-in-the-digital-age/184070

The Effects of Sampling Methods on Machine Learning Models for Predicting Long-term Length

of Stay: A Case Study of Rhode Island Hospitals
Son Nguyen, Alicia T. Lamere, Alan Olinskyand John Quinn (2019). International Journal of Rough Sets

and Data Analysis (pp. 32-48).

www.irma-international.org/article/the-effects-of-sampling-methods-on-machine-learning-models-for-predicting-long-

term-length-of-stay/251900

GPU Based Modified HYPR Technique: A Promising Method for Low Dose Imaging
Shrinivas D. Desaiand Linganagouda Kulkarni (2015). International Journal of Rough Sets and Data

Analysis (pp. 42-57).

www.irma-international.org/article/gpu-based-modified-hypr-technique/133532

Design and Implementation of an Intelligent Moving Target Robot System for Shooting Training
Junming Zhaoand Qiang Wang (2023). International Journal of Information Technologies and Systems

Approach (pp. 1-19).

www.irma-international.org/article/design-and-implementation-of-an-intelligent-moving-target-robot-system-for-shooting-

training/320512

Computer-Aided Ceramic Design: Its Viability for Building User-Centered Design
Folasayo Enoch Olalereand Ab Aziz Bin Shuaib (2014). Contemporary Advancements in Information

Technology Development in Dynamic Environments (pp. 266-286).

www.irma-international.org/chapter/computer-aided-ceramic-design/111615

http://www.igi-global.com/chapter/the-what-how-and-when-of-formal-methods/184456
http://www.igi-global.com/chapter/the-what-how-and-when-of-formal-methods/184456
http://www.irma-international.org/chapter/a-model-for-connected-e-government-in-the-digital-age/184070
http://www.irma-international.org/article/the-effects-of-sampling-methods-on-machine-learning-models-for-predicting-long-term-length-of-stay/251900
http://www.irma-international.org/article/the-effects-of-sampling-methods-on-machine-learning-models-for-predicting-long-term-length-of-stay/251900
http://www.irma-international.org/article/gpu-based-modified-hypr-technique/133532
http://www.irma-international.org/article/design-and-implementation-of-an-intelligent-moving-target-robot-system-for-shooting-training/320512
http://www.irma-international.org/article/design-and-implementation-of-an-intelligent-moving-target-robot-system-for-shooting-training/320512
http://www.irma-international.org/chapter/computer-aided-ceramic-design/111615

