
1052

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 42

DOI: 10.4018/978-1-5225-3923-0.ch042

ABSTRACT

The integration between design models of software systems and analytical models of non-functional
properties is an ideal framework on which lay the foundation for a deep understanding of the architec-
tures present in software systems and their properties. In order to reach this integration, this chapter
proposes a parameterized transformation for a model of performance properties derived from a system
model in the MDE context. The idea behind a parameterized term is to leave open the transformation
framework to adopt future improvements and make the approach reusable. The authors believe that this
kind of integration permits the addition of analysis capabilities to the software development process and
permits an early evaluation of design decisions.

INTRODUCTION

In 1987 F. Brooks published a famous paper called “No Silver Bullet: Essence and Accident in Software
Engineering” (Brooks, 1986) as a clear allusion to the fact that there are not magic solutions to the fun-
damental problems affecting the overrall development of software systems. This paper focused on the
inherent complexity of the software and its invisibility . Therefore, the field of software engineering is

Parameterized Transformation
Schema for a Non-

Functional Properties Model
in the Context of MDE

Gustavo Millán García
Pontifical University of Salamanca, Spain

Rubén González Crespo
Pontifical University of Salamanca, Spain

Oscar Sanjuán Martínez
Carlos III University, Spain

1053

Parameterized Transformation Schema
﻿

trying to address this inherent complexity by using models to better understand the characteristics of a
software systems increasingly complex and bigger. The use of models allow us to see a problem more
clearly and help us to visualize properties that can not easily seen from the encrypted form of the system.

The approach proposed by MDE (Model-Driven Engeneering) (Atkinson, 2003) is a clear recogni-
tion of the concept of model as an key artifact within the construction and development activity of a
software system. MDE discusses the software development process by promoting the use of models as
first-class artifacts. But not only promotes the use of different models but fundamental proper integration
and consistency allowing an integrated view of different properties and dimensions of system software
at different levels of abstraction.

One of the major advances in the use of models in software engineering is the integration of design
tools and semiautomatic code generation (Czarnecki, 2000) from these models. Thereby many potential
errors resulting from manual coding could be avoided . A clear example of these design and integration
tools is the Eclipse development environment and the Eclipse Modeling Project (Fundation, 2001) .

There is however a class of models that have nothing to do directly with the primary objective of
generating system code, but rather to allow quantitative analysis of non-functional properties of system,
such analysis would be based on performance models, reliability or security models.

This chapter discusses MDE software development view, focusing on the transformation for non-
functional properties models, more precisely a model based on queue theory (Lazowska, 1984). The
chapter provides a study of the transformation issues of a system model to a performance model based on
queuing theory. As a solution to the gap problem between models this chapter provides a parameterized
transformation schema applied to this kind of context. At the end of the chapter, we describe a simple
example for proving our approach

THE MDE VIEW OF SOFTWARE DEVELOPMENT PROCESS

The model-driven engineering software view of software development has its roots in a general method
to represent the details of the system in some kind of formalism (model) focused mainly on software
and hardware issues and then through a chains of transformations to obtain a software system encoded
in some execution platform.

The concept of model as a key artifact in the software development is widely accepted. However this
term is often overused and misused. A definition of model term could be found in (ModelWare, 2007).

Def. Model: “formal representation of entities and relationships (abstraction) with some correspon-
dence (isomorphism) to the real world for some purpose (pragmatism).”

Many models have been proposed in software development, but not all are formal. This variety of
informal models has contributed to make more difficult tracking of consistence between models.

The transformation process promoting by MDE could be shown in the following idealized sequence
M M Mn codetM M tMncode1 21 2 →  →.. .

In this scheme of transformations chain M1, M2, ..., Mn are design models of software system at
several details or levels (formalization) of abstraction and t represents any correspondence or association
between elements of different models implied in the process. Ideally, this transformation is hierarchical
by the different levels of abstraction (isomorphism).

23 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/parameterized-transformation-schema-for-a-non-

functional-properties-model-in-the-context-of-mde/192913

Related Content

Lessons From Practices and Standards in Safety-Critical and Regulated Sectors
William G. Tuohey (2018). Computer Systems and Software Engineering: Concepts, Methodologies, Tools,

and Applications (pp. 1232-1256).

www.irma-international.org/chapter/lessons-from-practices-and-standards-in-safety-critical-and-regulated-

sectors/192921

Rural Scenery Narrative and Field Experiences: From an Aspect of Kansei
Tadashi Hasebe, Michiaki Ohmuraand Hisashi Bannai (2011). Kansei Engineering and Soft Computing:

Theory and Practice (pp. 255-265).

www.irma-international.org/chapter/rural-scenery-narrative-field-experiences/46402

Fuzzy Multi-Objective Programming With Joint Probability Distribution
 (2019). Multi-Objective Stochastic Programming in Fuzzy Environments (pp. 263-295).

www.irma-international.org/chapter/fuzzy-multi-objective-programming-with-joint-probability-distribution/223807

Low-Power Methodologies and Strategies in VLSI Circuits
 Preethi, Sapna R.and Mohammed Mujeer Ulla (2023). Energy Systems Design for Low-Power Computing

(pp. 1-16).

www.irma-international.org/chapter/low-power-methodologies-and-strategies-in-vlsi-circuits/319986

Methodology for Solving Multi-Objective Quadratic Programming Problems in a Fuzzy Stochastic

Environment
 (2019). Multi-Objective Stochastic Programming in Fuzzy Environments (pp. 177-217).

www.irma-international.org/chapter/methodology-for-solving-multi-objective-quadratic-programming-problems-in-a-fuzzy-

stochastic-environment/223805

http://www.igi-global.com/chapter/parameterized-transformation-schema-for-a-non-functional-properties-model-in-the-context-of-mde/192913
http://www.igi-global.com/chapter/parameterized-transformation-schema-for-a-non-functional-properties-model-in-the-context-of-mde/192913
http://www.irma-international.org/chapter/lessons-from-practices-and-standards-in-safety-critical-and-regulated-sectors/192921
http://www.irma-international.org/chapter/lessons-from-practices-and-standards-in-safety-critical-and-regulated-sectors/192921
http://www.irma-international.org/chapter/rural-scenery-narrative-field-experiences/46402
http://www.irma-international.org/chapter/fuzzy-multi-objective-programming-with-joint-probability-distribution/223807
http://www.irma-international.org/chapter/low-power-methodologies-and-strategies-in-vlsi-circuits/319986
http://www.irma-international.org/chapter/methodology-for-solving-multi-objective-quadratic-programming-problems-in-a-fuzzy-stochastic-environment/223805
http://www.irma-international.org/chapter/methodology-for-solving-multi-objective-quadratic-programming-problems-in-a-fuzzy-stochastic-environment/223805

