
1738

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 72

DOI: 10.4018/978-1-5225-3923-0.ch072

ABSTRACT

Too often, computer science programs offer a software engineering course that emphasizes concepts,
principles, and practical techniques, but fails to engage students in real-world software experiences.
The authors have developed an approach to teaching undergraduate software engineering courses that
integrates client-oriented project development and open source development practice. They call this ap-
proach the Client-Oriented Open Source Software (CO-FOSS) model. The advantages of this approach
are that students are involved directly with a client, nonprofits gain a useful software application, and
the project is available as open source for other students or organizations to extend and adapt. This
chapter describes the motivation, elaborates the approach, and presents the results in substantial detail.
The process is agile and the development framework is transferrable to other one-semester software
engineering courses in a wide range of institutions.

MOTIVATION

Most computer science programs offer a software engineering course and view it as a critical link in
ensuring the career-readiness of computer science graduates. However, too often this course is taught in
terms of abstract principles, failing to engage students in real-world software experiences. Many of the

Bridging the Academia-Industry
Gap in Software Engineering:

A Client-Oriented Open Source
Software Projects Course

Bonnie K. MacKellar
St. John’s University, USA

Mihaela Sabin
University of New Hampshire, USA

Allen B. Tucker
Bowdoin College, USA

1739

Bridging the Academia-Industry Gap in Software Engineering

skills required in industry are best learned by hands-on practice, such as the need for effective commu-
nication among developers, or the need to interact with a non-technical client. Thus, students who have
never engaged in a hands-on project in software engineering enter the workforce with gaps in their skills.

It is, however, difficult to bring a significant software development experience into the confines of
a one-semester course in academia. The most common approach has been to introduce a “toy project,”
which is a small project designed by the instructor, and have students work in teams to complete the project
by the end of the semester. The advantage of this approach is that students will ideally learn to work in
teams and share responsibility for developing a codebase. The disadvantages are that the project may be
oversimplified, and students gain no experience interacting with clients or with code written by others.

Another approach is to work with local companies in the private sector who sponsor proprietary
client-oriented software projects. This has been used successfully by a number of schools, especially
larger programs that already have established linkages with companies (Judith, Bair, & Börstler, 2003;
Tadayon, 2004; Tan & Jones, 2008). Another setting that favors this approach is an internship course
with the projects being developed onsite at local companies. The advantage is that students gain experi-
ence with real clients with high stakes in real projects. However, these projects are often standalone,
one-off projects since companies may be reluctant to have students work on their internal codebase, or
to develop mission critical software. This means that it may be difficult to get enough time and attention
from personnel at the company while the students work on the project. Also, the project will normally
become the property of the company, meaning that it cannot be freely shared with other schools trying
to adopt a similar approach.

A third approach is to engage students in Free and Open Source Software (FOSS) development by
having them contribute to a large and active open source project, such as Linux or Mozilla (Marmorstein,
2011; Ellis, Morelli, DeLanerolle, & Hislop, 2007). The advantage of this approach is that instructors and
students can gain from the mentoring achieved through communication with the project’s professional
developers, and in some cases they contribute marginally to the “live” code base or the user documen-
tation. The disadvantages of this approach are that most ongoing projects are large and complex, their
developers may not be accessible, and given the time it takes to come up to speed in the project, students
may gain little practical experience in a one-semester course.

A fourth approach, which occupies a middle ground between the proprietary client-oriented project
model and the full-scale FOSS project, is to engage students in FOSS development via a relatively small
project that fits in a one semester course, with a local nonprofit organization as the client. Local nonprofits
are often happy to collaborate on these projects since they may have needs for mission-critical software
systems that are not well met by the commercial software industry, yet they have limited technology
budgets. Thus, it is relatively easy for an instructor to locate and collaborate with a local nonprofit.
However, many instructors may still be unsure of how to get started or how to organize such a course.

This chapter describes our collective experience with the fourth approach, which we call client-oriented
free and open source software development (CO-FOSS). The big advantage of treating client-oriented
open source projects is the very openness of the project. An open source project developed in the context
of one course for one client can be reused, extended, and adapted for new clients by subsequent iterations
of the same course, or even by courses at different institutions. By providing not just the codebase but
the course organization itself as an open source project, a collection of such projects can be built up to
be used as models at different institutions. In addition, the tools and practices of open source projects
provide a readymade infrastructure for software project courses.

23 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/bridging-the-academia-industry-gap-in-software-

engineering/192945

Related Content

An Optimal Hybrid Regression Testing Approach Based on Code Path Pruning
Varun Gupta (2018). Multidisciplinary Approaches to Service-Oriented Engineering (pp. 265-286).

www.irma-international.org/chapter/an-optimal-hybrid-regression-testing-approach-based-on-code-path-pruning/205303

Digital Home: A Case Study Approach to Teaching Software Engineering Concepts
Salamah Salamah, Massood Towhidnejadand Thomas Hilburn (2018). Computer Systems and Software

Engineering: Concepts, Methodologies, Tools, and Applications (pp. 1284-1299).

www.irma-international.org/chapter/digital-home/192923

An Empirical Study of Technological Factors Affecting Cloud Enterprise Resource Planning

Systems Adoption
Njenga Kinuthiaand Sock Chung (2020). Disruptive Technology: Concepts, Methodologies, Tools, and

Applications (pp. 2006-2029).

www.irma-international.org/chapter/an-empirical-study-of-technological-factors-affecting-cloud-enterprise-resource-

planning-systems-adoption/231276

Big Data Security Framework for Distributed Cloud Data Centers
Chandu Thota, Gunasekaran Manogaran, Daphne Lopezand Vijayakumar V. (2018). Cyber Security and

Threats: Concepts, Methodologies, Tools, and Applications (pp. 589-607).

www.irma-international.org/chapter/big-data-security-framework-for-distributed-cloud-data-centers/203525

Supporting Dynamic Essential Modeling of Organizations
Ajantha Dahanayake (2001). Computer-Aided Method Engineering: Designing CASE Repositories for the

21st Century (pp. 179-193).

www.irma-international.org/chapter/supporting-dynamic-essential-modeling-organizations/6879

http://www.igi-global.com/chapter/bridging-the-academia-industry-gap-in-software-engineering/192945
http://www.igi-global.com/chapter/bridging-the-academia-industry-gap-in-software-engineering/192945
http://www.irma-international.org/chapter/an-optimal-hybrid-regression-testing-approach-based-on-code-path-pruning/205303
http://www.irma-international.org/chapter/digital-home/192923
http://www.irma-international.org/chapter/an-empirical-study-of-technological-factors-affecting-cloud-enterprise-resource-planning-systems-adoption/231276
http://www.irma-international.org/chapter/an-empirical-study-of-technological-factors-affecting-cloud-enterprise-resource-planning-systems-adoption/231276
http://www.irma-international.org/chapter/big-data-security-framework-for-distributed-cloud-data-centers/203525
http://www.irma-international.org/chapter/supporting-dynamic-essential-modeling-organizations/6879

