
1763

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 73

DOI: 10.4018/978-1-5225-3923-0.ch073

ABSTRACT

A major challenge to teaching software engineering is achieving functioning teams that enforce indi-
vidual accountability while integrating software engineering principles, approaches, and techniques.
The two-semester software engineering course at the University of Texas at El Paso, referred to as the
Team-Oriented Software Engineering (TOSE) course, establishes communities of practice that are cul-
tivated through cooperative group practices and an improvement process model that enables learning
from past experiences. The experience of working with incomplete, ambiguous, and changing software
requirements motivates the need for applying disciplined software engineering practices and approaches
throughout project development. Over the course of the two-semester sequence, the nature of students’
participation in project teams changes: they begin to influence others in software engineering practice,
and their identities as software engineers begins to develop. The purpose of the chapter is to describe
how to structure a software engineering course that results in establishing communities of practice in
which learners become increasingly more knowledgeable team members who embody the skills needed
to work effectively in a team- and project-based environment.

Developing Communities
of Practice to Prepare

Software Engineers With
Effective Team Skills

Ann Q. Gates
The University of Texas – El Paso, USA

Elsa Y. Villa
The University of Texas – El Paso, USA

Salamah Salamah
The University of Texas – El Paso, USA

1764

Developing Communities of Practice to Prepare Software Engineers
﻿

INTRODUCTION

A long-standing problem when teaching software engineering is achieving functioning teams that enforce
individual accountability. Working as teams, students complete a large project while going through the
appropriate training in team skills. The human aspect of software development also makes teaching
software engineering and managing student-run projects challenging because of the following:

•	 General lack of maturity in the students’ team and communication skills,
•	 Difficulty in ensuring that all team members contribute to the project,
•	 Differences in students’ experiences and understanding, and
•	 Difficulty in evaluating and ensuring individual and team progress and work quality.

A two-semester, software engineering course, referred to as the Team-Oriented Software Engineering
(TOSE) course, at the University of Texas at El Paso (UTEP) addresses these challenges by incorporat-
ing cooperative-learning principles with an aim of establishing a community of practice. Cooperative
learning as an instructional approach (Johnson, Johnson, & Holubec, 1992; Johnson, Johnson, & Smith,
1991) is an evidence-based practice that contributes to team building while increasing student achieve-
ment and self-esteem (Johnson & Johnson, 1989). Using cooperative learning principles to structure
groups generates positive interdependence in which each member is committed to supporting others in
reaching their goals while at the same time working together to meet the group goal. The emphasis on
cooperative behavior cultivates an environment in the software engineering course where communities of
practice can emerge and grow. Drawing from the work of Lave and Wenger (1991) and Wenger (1998),
a community of practice is defined as a group of individuals who share a common purpose, contribute
to each other’s success, and develop shared practices that identify them as members of that group.

The purpose of the chapter is to describe how structuring a software engineering course using co-
operative learning principles results in establishing communities of practice in which learners become
increasingly more knowledgeable team members who embody the skills needed to work effectively in a
team- and project-based environment. The objectives of the chapter are to: (1) present the challenges in
developing functional teams; (2) outline how to structure a software engineering course in which teams
move toward becoming a community of practice; and (3) describe how a community of practice serves
to support functioning and practicing software engineers.

BACKGROUND

Overview

In the perspective of this chapter, cooperative learning is at the core of building functional and effective
teams for addressing the issues, challenges, and concerns of ineffective student teams typically result-
ing from ill-structured group work (rather than team work). In such group work, a task is given to the
group with the hope, for example, that group members will resolve any conflicts on their own and allow
for a “leader” to emerge who can take charge. When groups are structured in this manner, those who
are “followers” minimally contribute to deliverables and may be marginalized by the others. Rather, a

18 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/developing-communities-of-practice-to-prepare-

software-engineers-with-effective-team-skills/192946

Related Content

Non-Visual Programming, Perceptual Culture and Mulsemedia: Case Studies of Five Blind

Computer Programmers
Simon Hayhoe (2012). Computer Engineering: Concepts, Methodologies, Tools and Applications (pp.

1933-1951).

www.irma-international.org/chapter/non-visual-programming-perceptual-culture/62554

Mappings of MOF Metamodels and Algebraic Languages
Liliana María Favre (2010). Model Driven Architecture for Reverse Engineering Technologies: Strategic

Directions and System Evolution (pp. 78-106).

www.irma-international.org/chapter/mappings-mof-metamodels-algebraic-languages/49180

Quantum-Inspired Automatic Clustering Technique Using Ant Colony Optimization Algorithm
Sandip Dey, Siddhartha Bhattacharyyaand Ujjwal Maulik (2018). Quantum-Inspired Intelligent Systems for

Multimedia Data Analysis (pp. 27-54).

www.irma-international.org/chapter/quantum-inspired-automatic-clustering-technique-using-ant-colony-optimization-

algorithm/202544

Agile, Lean, and Service-Oriented Development, Continuum, or Chasm
Juha Rikkilä (2013). Agile and Lean Service-Oriented Development: Foundations, Theory, and Practice

(pp. 1-32).

www.irma-international.org/chapter/agile-lean-service-oriented-development/70727

Cybersecurity and Data Breaches at Schools
Libi Shen, Irene Chenand Anchi Su (2018). Cyber Security and Threats: Concepts, Methodologies, Tools,

and Applications (pp. 1294-1317).

www.irma-international.org/chapter/cybersecurity-and-data-breaches-at-schools/203561

http://www.igi-global.com/chapter/developing-communities-of-practice-to-prepare-software-engineers-with-effective-team-skills/192946
http://www.igi-global.com/chapter/developing-communities-of-practice-to-prepare-software-engineers-with-effective-team-skills/192946
http://www.irma-international.org/chapter/non-visual-programming-perceptual-culture/62554
http://www.irma-international.org/chapter/mappings-mof-metamodels-algebraic-languages/49180
http://www.irma-international.org/chapter/quantum-inspired-automatic-clustering-technique-using-ant-colony-optimization-algorithm/202544
http://www.irma-international.org/chapter/quantum-inspired-automatic-clustering-technique-using-ant-colony-optimization-algorithm/202544
http://www.irma-international.org/chapter/agile-lean-service-oriented-development/70727
http://www.irma-international.org/chapter/cybersecurity-and-data-breaches-at-schools/203561

