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ABSTRACT

This chapter introduces a model-based reinforcement learning (RL) approach for continuous state 
and action spaces. While most RL methods try to find closed-form policies, the approach taken here 
employs numerical online optimization of control action sequences following the strategy of nonlinear 
model predictive control. First, a general method for reformulating RL problems as optimization tasks 
is provided. Subsequently, particle swarm optimization (PSO) is applied to search for optimal solu-
tions. This PSO policy (PSO-P) is effective for high dimensional state spaces and does not require a 
priori assumptions about adequate policy representations. Furthermore, by translating RL problems 
into optimization tasks, the rich collection of real-world-inspired RL benchmarks is made available for 
benchmarking numerical optimization techniques. The effectiveness of PSO-P is demonstrated on two 
standard benchmarks mountain car and cart-pole swing-up and a new industry-inspired benchmark, 
the so-called industrial benchmark.
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INTRODUCTION

This chapter focuses on a general reinforcement learning (RL) setting with continuous state and action 
spaces. In this domain, the policy performance often strongly depends on the algorithms for policy gen-
eration and the chosen policy representation (Sutton & Barto, 1998). In the authors’ experience, tuning 
the policy learning process is generally challenging for industrial RL problems. Specifically, it is hard to 
assess whether a trained policy has unsatisfactory performance due to inadequate training data, unsuit-
able policy representation, or an unfitting training algorithm. Determining the best problem-specific RL 
approach often requires time-intensive trials with various policy configurations and training algorithms. 
In contrast, it is often significantly easier to train a well-performing system model from observational 
data, compared to directly learning a policy and assessing its performance.

The main purpose of the present contribution is to provide a heuristic for solving RL problems which 
employs numerical online optimization of control action sequences. As an initial step, a neural system 
model is trained from observational data with standard methods. However, the presented method also 
works with any other model type, e.g., Gaussian process or first principal models. The resulting problem 
of finding optimal control action sequences based on model predictions is solved with particle swarm 
optimization (PSO), because PSO is an established algorithm for non-convex optimization. Specifically, 
the presented heuristic iterates over the following steps. (1) PSO is employed to search for an action 
sequence that maximizes the expected return when applied to the current system state by simulating its 
effects using the system model. (2) The first action of the sequence with the highest expected return is 
applied to the real-world system. (3) The system transitions to the subsequent state and the optimization 
process are repeated based on the new state (go to step 1).

As this approach can generate control actions for any system state, it formally constitutes an RL 
policy. This PSO policy (PSO-P) deviates fundamentally from common RL approaches. Most methods 
for solving RL problems try to learn a closed-form policy (Sutton & Barto, 1998). The most significant 
advantages of PSO-P are the following. (1) Closed-form policy learners generally select a policy from 
a user-parameterized (potentially infinite) set of candidate policies. For example, when learning an 
RL policy based on tile coding (Sutton, 1996), the user must specify partitions of the state space. The 
partition’s characteristics directly influence how well the resulting policy can differentiate the effect 
of different actions. For complex RL problems, policy performances usually vary drastically depend-
ing on the chosen partitions. In contrast, PSO-P does not require a priori assumptions about problem-
specific policy representations, because it directly optimizes action sequences. (2) Closed-form RL 
policies operate on the state space and are generally affected by the curse of dimensionality (Bellman, 
Adaptive Control Processes: A Guided Tour, 1962). Simply put, the number of data points required for 
a representative coverage of the state space grows exponentially with the state space’s dimensionality. 
Common RL methods, such as tile coding, quickly become computationally intractable with increas-
ing dimensionality. Moreover, for industrial RL problems it is often very expensive to obtain adequate 
training data prohibiting data-intensive RL methods. In comparison, PSO-P is not affected by the state 
space dimensionality because it operates in the space of action sequences.

From a strictly mathematical standpoint, PSO-P follows a known strategy from nonlinear model pre-
dictive control (MPC): employing online numerical optimization in search for the best action sequences. 
While MPC and RL target almost the same class of control optimization problems with different meth-
ods, the mathematical formalisms in both communities are drastically different. Particularly, the authors 
find that the presented approach is rarely considered in the RL community. The main contribution of 
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