
510

Chapter XXXV
Processor for Mobile

Applications
Ben Abdallah Abderazek
University of Aizu, Japan

Arquimedes Canedo
University of Electro-Communications, Japan

Kenichi Kuroda
University of Aizu, Japan

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Abstract

Mobile processors are used in numerous embedded systems, including laptops, personal digital organiz-
ers, wearable computers, cellular phones, mobile Internet terminals, digital cameras, digital cam-coders,
smart cards, and sensor networks nodes. Although these systems differ in terms of their communication
and computation requirements, they share the common need for low power, security and small memory
footprint. This chapter presents the software and hardware architecture and the design results of a low
power processor architecture based on queue computation model, which offers an attractive option in
the design of mobile and embedded systems.

INTRODUCTION

Embedded and mobile processor design require-
ments have forced computer architects to explore
and discover new techniques for delivering
architectures with low power consumption, low
memory footprint, and fast response-time. RISC

basic design has been improved in various ways
to produce high performance architectures that
fit in the constraints imposed by the embedded
systems. A popular modification to improve
RISC code density has been the utilization of a
dual instruction set scheme, where an original
32-bit instruction set is available together with

 511

Processor for Mobile Applications

a reduced instruction set of 16-bit. The available
instructions in the reduced instruction set are
chosen to be those instructions most frequently
executed in some given applications. Having
reduced instructions improves code density, and
as a consequence, improves power consumption.
As less bits are available in the instruction, more
reduced instructions are required to execute the
same task than full size instructions, leading to
performance degradation.

An alternative to achieve high performance at
high code density is the use of Queue-based pro-
cessors (Abderaezk, Yoshinaga, & Sowa, 2006). A
queue processor is a computer that uses a first-in
first-out (FIFO) data structure as the intermedi-
ate storage location for computations. The FIFO
data structure, called operand queue, is available
through pointers located at the head and rear of
the queue. Instructions implicitly reference the
location where operands will be taken and the
result will be stored back. Since operations have
no explicit operands, the instruction set requires
fewer bits than a RISC instruction set.

Queue based machines have been studied
for different purposes (Preiss & Hamacher,
1985; Fernandes, Losa & Topham, 1997; Heath,
Pemmara-ju & Trenk, 1996; Schmit, Levine &
Ylvisaker, 2002), but none of the previous works
have dealt with the benefits of the queue comput-
ing for the high performance at high code density.
Furthermore, no compiler framework has been
developed or studied in the literature.

In this chapter, we introduce the software and
hardware development results of low power, low
complexity Queue processor, named QueueCore,
architecture targeted for mobile and embedded and
applications. The QueueCore stores intermediate
results in a circular queue-registers. Datum is
inserted in the queue in produced order scheme
and can be reused. This feature has a profound
implication in the areas of parallel execution,
programs compactness, hardware simplicity and
high execution speed (Abderaezk et al., 2006).

The QueueCore (also named QC-3) instruc-
tions are 16-bit wide, simplifying fetch and
decode stages and facilitating pipelining of the
processor. However, the short instructions may
limit the memory addressing space as only 8-bit
are left for offset (6-bit) and base address (2-bit
- 00:a0/d0, 01:a1/d1, 10:a2/d2, and 11:a3/d3). To
cope with this shortage, QC-3 core implements
QCaEXT technique, which uses a special “covop”
instruction that extends load and store instructions
offsets and also extends immediate values if nec-
essary. The Queue processor compiler (Canedo,
Abderazek & Sowa, 2006) outputs full addresses
and full constants and it is the duty of the QC-3
assembler to detect and insert a “covop” instruc-
tion whenever an address or a constant exceeds
the limit imposed by the instruction’s field sizes.
Conditional branches are handled in a particular
way since the compiler does not handle target ad-
dresses, instead it generates target labels. When
the assembler detects a target label, it looks if the
label has been previously read and fills the instruc-
tion with the corresponding value and “covop”
instruction if needed. There is a back-patch pass
in the assembler to resolve all missing forward
referenced instructions.

QUEUECORE COMPILER
OVERVIEW

Compiling for the queue computation model
differs from the conventional techniques used
in compilers for register machines since queue
instructions require an offset reference value
rather than a location name (e.g., register number).
In (Canedo, Abderazek & Sowa, 2007; Canedo,
2006), we have investigated and developed the
code generation algorithm specifically for the
queue computation model. In this section, we
describe the design of the queue compiler infra-
structure.

11 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/processor-mobile-applications/21025

Related Content

Applied Training in Virtual Environments
Ken Hudson (2011). Gaming and Simulations: Concepts, Methodologies, Tools and Applications (pp. 928-

940).

www.irma-international.org/chapter/applied-training-virtual-environments/49427

Brain Neuron Network Extraction and Analysis of Live Mice from Imaging Videos
Ruichi Yu, Jui-Hsin (Larry) Lai, Shun-Xuan Wangand Ching-Yung Lin (2017). International Journal of

Multimedia Data Engineering and Management (pp. 1-20).

www.irma-international.org/article/brain-neuron-network-extraction-and-analysis-of-live-mice-from-imaging-

videos/182648

FaceTimeMap: Multi-Level Bitmap Index for Temporal Querying of Faces in Videos
Buddha Shrestha, Haeyong Chungand Ramazan S. Aygün (2019). International Journal of Multimedia Data

Engineering and Management (pp. 37-59).

www.irma-international.org/article/facetimemap/233863

WLAN Security Management
Göran Pulkkis, Kay J. Grahnand Jonny Karlsson (2005). Encyclopedia of Multimedia Technology and

Networking (pp. 1104-1113).

www.irma-international.org/chapter/wlan-security-management/17374

Indexing Musical Sequences in Large Datasets Using Relational Databases
Aleksey Charapkoand Ching-Hua Chuan (2015). International Journal of Multimedia Data Engineering and

Management (pp. 1-18).

www.irma-international.org/article/indexing-musical-sequences-in-large-datasets-using-relational-databases/130336

http://www.igi-global.com/chapter/processor-mobile-applications/21025
http://www.irma-international.org/chapter/applied-training-virtual-environments/49427
http://www.irma-international.org/article/brain-neuron-network-extraction-and-analysis-of-live-mice-from-imaging-videos/182648
http://www.irma-international.org/article/brain-neuron-network-extraction-and-analysis-of-live-mice-from-imaging-videos/182648
http://www.irma-international.org/article/facetimemap/233863
http://www.irma-international.org/chapter/wlan-security-management/17374
http://www.irma-international.org/article/indexing-musical-sequences-in-large-datasets-using-relational-databases/130336

