
��

Chapter V
Process Models of SDLCs:

Comparison and Evolution

Laura C. Rodríguez
Autonomous University of Aguascalientes, Mexico

Manuel Mora
Autonomous University of Aguascalientes, Mexico

Miguel Vargas Martin
University of Ontario Institute of Technology, Canada

Rory O’Connor
Dublin City University, Ireland

Francisco Alvarez
Autonomous University of Aguascalientes, Mexico

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbstrAct

The software engineering discipline has developed the concept of software process to guide development
teams towards a high-quality end product to be delivered on-time and within the planned budget. Con-
sequently, several software-systems development life-cycles (PM-SDLCs) have been theoretically formu-
lated and empirically tested over the years. In this chapter, a conceptual research methodology is used
to review the state of the art on the main PM-SDLCs formulated for software-intensive systems, with the
aim to answer the following research questions: (a) What are the main characteristics that describe the
PM-SDLCs?, (b) What are the common and unique characteristics of such PM-SDLCs?, and (c) What are
the main benefits and limitations of PM-SDLCs from a viewpoint of a conceptual analysis? This research
is motivated by a gap in the literature on comprehensive studies that describe and compare the main PM-
SDLCs and organizes a view of the large variety of PM-SDLCs.

 ��

Process Models of SDLCs

INtrODUctION

In order for a product to be developed, a develop-
ment (formal, semi-formal, or informal) process is
required. For the specific case of software artifacts,
a software (development) process is a method of
producing such artifacts. This process is usually
denoted as the software-systems development
life-cycle. To guide its execution under different
design conditions, a set of process models have
been also proposed: process model of systems
development life cycles (PM-SDLCs). In general,
the aim of each single process is “to facilitate the
engineer doing the job well rather than to prevent
them from doing it badly” (Tyrrel, 2000).

In the software engineering discipline, the
concept of a software process has been developed
to guide the development team on constructing a
high-quality end product that be delivered on-time
and within the planned budget. Consequently, sev-
eral PM-SDLCs have been theoretically formulated
and empirically tested over the years, and in general
many have been an evolution of previous models. In
some cases, the evolution is originated as a result of
a major advance in information and communications
technologies (ICT), and in other cases, as a result of
more planned changes in the organizations’ settings
and their business environments.

In this chapter, we use a conceptual research
methodology (Glass, Vessey, & Ramesh, 2002;
Mora, 2004) to review the state of the art on the
main PM-SDLCs formulated for software-intensive
systems, with the aim to answer the following re-
search questions: (a) What are the main character-
istics that describe the PM-SDLCs?, (b) What are
the common and the unique characteristics of such
PM-SDLCs?, and (c) What are the main benefits
and limitations of PM-SDLCs from a viewpoint
of a conceptual analysis?

The conceptual research approach is widely
used in the software engineering domain (Glass
et al., 2002). According to Cournellis’ ideas
(2000)—quoted by Mora (2004)—this research
method studies concepts, ideas, or constructs on
empirical objects. This chapter uses the research

methodology process, described in Mora, 2004,
that consists of the following phases: (1) formula-
tion of the research problem; (2) analysis of related
studies; (3) development of the conceptual artifact;
and (4) validation of the conceptual artifact. The
first phase and second phases are similar to other
well-known research methods. In the third phase,
two activities are conducted: the development of a
general framework/model and the detailed develop-
ment of this general framework/model. This third
phase is a creativity-intensive process guided by
the findings, contributions, and limitations found
in the second phase and a set of preliminary pro-
forms that are fixed through an iterative process
(Andoh-Baidoo, White, & Kasper, 2004). Finally,
in the last phase, the conceptual artifact’s valida-
tion can be conducted using a panel of experts,
a logical argument discourse, or/and a proof of
concept developing a prototype or pilot survey. In
this study, we used the first procedure with two
internal academic experts and an expert practitioner
in the development of SwE projects. Satisfactory
average scores of 4.6 in a 5-point Likert scale of
an instrument conceptual composed of eight items
was achieved (Mora, 2004).

This research is motivated by the knowledge gap
in the literature on comprehensive studies that de-
scribe and compare the main available PM-SDLCs.
The research relevance can be considered high
because the main objective of software engineering
is the development of high-quality, on-time, and
within budget software projects, which can only
be delivered with the utilization of a systematic
development process, as has been proven in other
engineering disciplines. Therefore, this study con-
tributes to organize the diverse and partial views
of PM-SDLCs.

bAcKGrOUND

Software engineering, according to the IEEE Stan-
dard Computer Dictionary (1990) is the: “ (1) Ap-
plication of quantifiable approach, disciplined to the
software development, operation and maintenance;

12 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/process-models-sdlcs/21062

Related Content

Business Service Modeling for the Service-Oriented Enterprise
Jeewanie Jayasinghe Arachchige, Hans Weigandand Manfred Jeusfeld (2012). International Journal of

Information System Modeling and Design (pp. 1-22).

www.irma-international.org/article/business-service-modeling-service-oriented/61393

MMT: A Tool for Observing Metrics in Software Projects
Pekka Mäkiaho, Katriina Vartiainenand Timo Poranen (2022). Research Anthology on Agile Software, Software

Development, and Testing (pp. 1077-1089).

www.irma-international.org/chapter/mmt/294510

Domain-Specific Language for Describing Grid Applications
Enis Afgan, Purushotham Bangaloreand Jeff Gray (2009). Software Applications: Concepts, Methodologies,

Tools, and Applications (pp. 328-365).

www.irma-international.org/chapter/domain-specific-language-describing-grid/29396

Designing Secure and Privacy-Aware Information Systems
Christos Kalloniatis, Argyri Pattakou, Evangelia Kavakliand Stefanos Gritzalis (2017). International Journal of

Secure Software Engineering (pp. 1-25).

www.irma-international.org/article/designing-secure-and-privacy-aware-information-systems/190419

Comprehensive Tool Support for Enterprise Modeling and Evaluation
Patrick Delfmann, Hanns-Alexander Dietrich, Matthias Steinhorstand Jörg Becker (2014). International Journal

of Information System Modeling and Design (pp. 26-54).

www.irma-international.org/article/comprehensive-tool-support-for-enterprise-modeling-and-evaluation/119075

http://www.igi-global.com/chapter/process-models-sdlcs/21062
http://www.igi-global.com/chapter/process-models-sdlcs/21062
http://www.irma-international.org/article/business-service-modeling-service-oriented/61393
http://www.irma-international.org/chapter/mmt/294510
http://www.irma-international.org/chapter/domain-specific-language-describing-grid/29396
http://www.irma-international.org/article/designing-secure-and-privacy-aware-information-systems/190419
http://www.irma-international.org/article/comprehensive-tool-support-for-enterprise-modeling-and-evaluation/119075

