
 ���

Chapter XIII
Software Modeling Processes:

UML–xUML Review

Roy Gelbard
Bar-Ilan University, Israel

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbstrAct

Applications require short development cycles and constant interaction with customers. Requirement gath-
ering has become an ongoing process, reflecting continuous changes in technology and market demands.
System analysis and modeling that are made at the initial project stages are quickly abandoned and become
outmoded. Model driven architecture (MDA), rapid application development (RAD), adaptive develop-
ment, extreme programming (XP), and others have resulted in a shift from the traditional waterfall model.
These methodologies attempt to respond to the needs, but do they really fulfill their objectives, which are
essential to the success of software development? Unified modeling language (UML) was created by the
convergence of several well-known modeling methodologies. Despite its popularity and the investments that
have been made in UML tools, UML is not yet translatable into running code. Some of the problems that
have been discovered have to do with the absence of action semantics language and its size. This chapter
reviews and evaluates the UML evolution (UML2, xUML), providing criteria and requirements to evalu-
ate UML and the xUML potential to raise levels of abstraction, flexibility, and productivity enhancement.
At the same time, it pinpoints its liabilities that keep it from completely fulfilling the vision of software
development through a continuous exactable modeling process, considered to be the future direction for
modeling and implementation.

INtrODUctION

In his book, Evitts describes the beginnings of
UML tools (Evitts, 2000). The context prompting
the development of UML was the increasing com-
plexity of software which began in the 90s, when
technologies (tools) that could deal with a network

and information-driven world did not yet exist. In
1991, Malone and Rockart described expectations
that would soon emerge from all quarters. They
noted that whenever people work together, there
is a need to communicate so as to make decisions,
allocate resources, and provide and receive products
and services at the right time and place. However,

��0

Software Modeling Processes

in the early 90s, methodologies were rarely sup-
ported, either by common modeling tools, traditional
methodologies (based upon process charts, ERD,
and DFD), or object oriented methodologies. The
semi-standard development process, the “water-
fall,” was convenient, albeit unperfected, whereas
object-oriented provided none of these comforts,
and the general opinion was that very few of its
efforts had any real advantages over mainstream
approaches.

In early 90s, the rise of Java, the standardization
of C++, the birth and rebirth of CORBA, and the
emergence of pattern languages for software design
attracted a great deal of attention and popularity
to UML. In June 1996, Rational released the 0.9
revision of UML, and then later on January 1997,
Rational’s 1.0 spec reached the market. In September
1997, Rational’s UML 1.1 was combined with the
OMG’s UML proposal to create the final product
that was called UML 1.0.

The current chapter evaluates the extent to which
the UML can be used to support the modeling
process, providing not only better communication
among system analysts and developers. Primarily,
it examines productivity enhancement through
generating capabilities of wider range of software
elements based upon modeling definitions.

bAcKGrOUND rEVIEW

A. From UML 1 to UML 2.0

The scope of the UML has recently broadened. It
is no only longer used to describe software sys-
tems, but now also business processes. With the
service-oriented architect (SOA) and model driven
architecture (MDA) initiatives, it has evolved to
describe and automate business processes (activ-
ity diagram is a UML variation of the traditional
process diagram), as well as become a language for
developing platform-independent systems.

Earlier versions of the UML standard did not
describe what it meant to support the standard. As

a result, UML tool vendors were free to support
incomplete UML features, and converting models
from one tool to another was often extremely dif-
ficult, if not impossible.

UML 2.0 defines 38 compliance points (Ambler,
2004; Bjorkander & Kobryn, 2003). A compli-
ance point is an area of UML, such as use cases.
All implementations are required to implement a
single compliance point, the kernel. The other 37
compliance points are currently optional. Evaluating
modeling tools in light of these compliance points
helps clarify which model elements are supported,
and to what extent. For each compliance point, there
are four compliance options. A compliance option
determines how compliant a given implementation
is. The four options are as follows:

• No compliance—the implementation does not
comply with the syntax, rules, and notation
for a given compliance point.

• Partial compliance—the implementation
partially complies with the syntax, rules, and
notation for a given compliance point.

• Compliant compliance—the implementation
fully complies with the syntax, rules, and
notation for a given compliance point.

• Interchange compliance—the implementa-
tion fully complies with the syntax, rules,
notation, and XMI schema for a given compli-
ance point.

However, UML 2.0 does not address any of
UML 1.x’s significant deficiencies, namely the lack
of business rule Modeling, workflow modelling,
and user interface modeling, although there is
a business rule working group within the OMG.
Several methodologists have suggested approaches
to user interface flow modeling and design model-
ing using UML, but no official effort to develop a
common profile exists.

b. Executable UML (xUML)

xUML is a subset of the UML, incorporating action
language that allows system developers to build ex-

8 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/software-modeling-processes/21070

Related Content

A Cognitive Informatics Reference Model of Autonomous Agent Systems (AAS)
Yingxu Wang (2009). Software Applications: Concepts, Methodologies, Tools, and Applications (pp. 3102-

3117).

www.irma-international.org/chapter/cognitive-informatics-reference-model-autonomous/29552

Service-Oriented Software Engineering: A Guidance Framework for Service Engineering Methods
Youcef Baghdadi (2015). International Journal of Systems and Service-Oriented Engineering (pp. 1-19).

www.irma-international.org/article/service-oriented-software-engineering/126635

A Set of Usability Heuristics and Design Recommendations for Higher Education Institutions'

Websites
Bhim Sain Singlaand Himanshu Aggarwal (2020). International Journal of Information System Modeling and

Design (pp. 58-73).

www.irma-international.org/article/a-set-of-usability-heuristics-and-design-recommendations-for-higher-education-institutions-

websites/250313

Advances in Steam Quality Monitoring Systems in Power Plants
Mahmoud Meribout, Imran Saiedand Esra Al Hosani (2018). Cyber-Physical Systems for Next-Generation

Networks (pp. 183-206).

www.irma-international.org/chapter/advances-in-steam-quality-monitoring-systems-in-power-plants/204673

U.S. Regulatory Requirements for Positive Train Control Systems
Mark Hartongand Duminda Wijesekera (2012). Railway Safety, Reliability, and Security: Technologies and

Systems Engineering (pp. 1-21).

www.irma-international.org/chapter/regulatory-requirements-positive-train-control/66665

http://www.igi-global.com/chapter/software-modeling-processes/21070
http://www.igi-global.com/chapter/software-modeling-processes/21070
http://www.irma-international.org/chapter/cognitive-informatics-reference-model-autonomous/29552
http://www.irma-international.org/article/service-oriented-software-engineering/126635
http://www.irma-international.org/article/a-set-of-usability-heuristics-and-design-recommendations-for-higher-education-institutions-websites/250313
http://www.irma-international.org/article/a-set-of-usability-heuristics-and-design-recommendations-for-higher-education-institutions-websites/250313
http://www.irma-international.org/chapter/advances-in-steam-quality-monitoring-systems-in-power-plants/204673
http://www.irma-international.org/chapter/regulatory-requirements-positive-train-control/66665

