
 659

ABSTRACT

Software testing in general and graphical user
interface (GUI) testing in particular is one of the
major challenges in the lifecycle of any software
system. GUI testing is inherently more difficult
than the traditional and command-line interface
testing. Some of the factors that make GUI testing
different from the traditional software testing and
significantly more difficult are: a large number of
objects, different look and feel of objects, many
parameters associated with each object, progres-
sive disclosure, complex inputs from multiple
sources, and graphical outputs. The existing test-
ing techniques for the creation and management of
test suites need to be adapted/enhanced for GUIs,
and new testing techniques are desired to make
the creation and management of test suites more
efficient and effective. In this article, a methodol-

ogy is proposed to create test suites for a GUI.
The proposed methodology organizes the testing
activity into various levels. The tests created
at a particular level can be reused at higher
levels. This methodology extends the notion
of modularity and reusability to the testing
phase. The organization and management of
the created test suites resembles closely to the
structure of the GUI under test.

Introduction

Graphical user interfaces (GUl) are an important
part of any end-user software application today
and can consume significant design, develop-
ment, and testing activities. As much as half
of the source code of a typical user-interaction
intensive application can be related to user inter-

Chapter 2.18
A Graphical User Interface (GUI)

Testing Methodology
Zafar Singhera

ZAF Consulting, USA

Ellis Horowitz
University of Southern California, USA

Abad Shah
R & D Center of Computer Science, Pakistan

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

660

A Graphical User Interface (GUI) Testing Methodology

faces (Harold, Gupta, & Soffa, 1993; Horowitz
& Singhera, 1993). GUIs provide an easier way
of using various functions of the application by
organizing them in a hierarchy of options and
presenting only the options which make sense
in the current working context. GUIs help users
concentrate on the problem instead of putting
efforts in remembering all the options provided
by the software application that is being used to
solve the problem, or searching for the right op-
tion from a huge list of options provided by the
application. Graphical user interfaces organize
the standard user actions and working paradigms
into various components that are presented
graphically to the user during various usage and
application contexts. GUIs enhance the usability
of an application significantly. However it also
makes application development, testing and
maintenance significantly more difficult (My-
ers, 1993; Wittel & Lewis,1991). The nature of
GUI applications, their asynchronous mode of
operation, nontraditional input and output, and
hierarchical structure for user interaction make
their testing significantly different and difficult
from the traditional software testing.

Functional and regression testing of graphi-
cal user interfaces is significantly more complex
than testing of traditional non-GUI applications
because of the additional complexities mentioned
in the previous paragraph. A number of commer-
cial tools, like Mercury Interactive’s WinRunner,
XRunner and Segue Software’s SilkPerformer,
are used in the industry to test graphical user
interfaces. These tools provide capture/replay
capabilities to test a graphical user interface.
Although functionality provided by these tools
is sufficient for typical recored/replay scenarios
but they lack an underlying model that can pro-
vide more information about the test coverage
or to determine the quality of the user interface
from a particular functional or implementation
perspective. These tools also do not provide a
framework that assists in organized and modular

testing. The methodology presented in this article
uses user interface graphs (UIG) as a framework
for organization of test scripts, generation of
modular test suites, and coverage analysis of a
test execution.

In this article, we propose a methodology for
regression testing of graphical user interfaces,
with and without a formal specification of the ap-
plication under test. The remainder of this article is
organized as follows: Section 2 highlights some of
the best practices and recommendations that help
in testing a GUI application in an organized fash-
ion, improve efficiency and effectiveness of test-
ing, reduces possibility of errors, and minimizes
repeated work. Section 3 describes the major steps
of the proposed methodology. It also introduces
a sample X application, called Xman, which is
used to demonstrate the effectiveness of the sug-
gested strategy. Section 4 demonstrates the testing
methodology when formal specifications of the
application under test are not available. Section 5
illustrates the proposed testing methodology when
the formal specifications of the application under
test are available. This section also describes the
way statistics are collected during a testing activity
and how those can be used to improve the quality
of the testing. Section 6 points out the situations
when a modification to the application under test
might require tuning or recapturing of some of
the test scripts. Section 7 concludes the article
by summarizing our contribution and providing
hints about the future related work.

GUI Testing:
Best Practices and
Recommendations

In this section, we highlight some of the sought
features, well-knows best practices and recom-
mendations for planning a testing activity for a
graphical user interface.

16 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/graphical-user-interface-gui-testing/22278

Related Content

System and Training Design for End-User Error
Jonathan K. Lazarand Anthony F. Norcio (2000). Human Centered Methods in Information Systems:

Current Research and Practice (pp. 76-90).

www.irma-international.org/chapter/system-training-design-end-user/22194

Misperception of Economic Terms: Evidence From a Choice Experiment in Japan
SeEun Jung, Yasuhiro Nakamoto, Masayuki Satoand Katsunori Yamada (2018). International Journal of

Applied Behavioral Economics (pp. 1-14).

www.irma-international.org/article/misperception-of-economic-terms/205532

BBC Schools beyond the TV Set: Educational Media Convergence in the Classroom
María Luisa Zorrilla Abascal (2011). Interactive Media Use and Youth: Learning, Knowledge Exchange and

Behavior (pp. 119-148).

www.irma-international.org/chapter/bbc-schools-beyond-set/51539

Reviewing Gratification Effects in Mobile Gaming
Yuchan Gao (2016). Handbook of Research on Human Social Interaction in the Age of Mobile Devices (pp.

406-428).

www.irma-international.org/chapter/reviewing-gratification-effects-in-mobile-gaming/157005

Users of ICT at Public Access Centers: Age, Education, Gender, and Income Differences in

Users
Ricardo Gomezand Kemly Camacho (2011). International Journal of Information Communication

Technologies and Human Development (pp. 1-20).

www.irma-international.org/article/users-ict-public-access-centers/51568

http://www.igi-global.com/chapter/graphical-user-interface-gui-testing/22278
http://www.irma-international.org/chapter/system-training-design-end-user/22194
http://www.irma-international.org/article/misperception-of-economic-terms/205532
http://www.irma-international.org/chapter/bbc-schools-beyond-set/51539
http://www.irma-international.org/chapter/reviewing-gratification-effects-in-mobile-gaming/157005
http://www.irma-international.org/article/users-ict-public-access-centers/51568

