
20

Copyright © 2019, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2

DOI: 10.4018/978-1-5225-8446-9.ch002

ABSTRACT

Being a simple semi-structured data model, JSON has been widely accepted as a simple way to store,
query, modify, and exchange data among applications. In comparison with schema-oriented relational
data model to store, query, and update application data, JSON data model has the advantage of being
self-contained, free from schema evolution issues, and flexible enough to enable agile style development
paradigm. Therefore, during the last 5 years, SQL/JSON standard has been established as foundation
for managing JSON data in SQL standard and there have been JSON functionalities added into RDBMS
products to support SQL/JSON standard to various degree. In this chapter, the authors will analyze the
strength and weakness of using JSON as the data model to manage data for applications. For use cases
where JSON data model is ideal, they present the design approaches to store, index, query, and update
JSON in the kernel of RDBMS to support SQL/JSON standard defined operations effectively and efficiently.

JSON DATA MODEL AND ITS APPLICATION USE CASES

Why JSON Database?: Merits of Using JSON Data Model

Relational model (Codd, 1970) in RDBMS is based on ‘schema first, data later’ paradigm. Database
users are required to design a relational schema before data can be stored. The schema is based on Entity-
Relationship design practices (Chen, 1977) where an entity is composed of a set of attributes. Entities are
related to each other through reference keys. Each entity is modeled as a table and every attribute of an
entity becomes a column of the table. Each reference relationship is enforced as primary key and foreign
key constraint. Foreign key columns of a table store reference keys to support reference relationship. To
achieve update efficiency by avoiding data duplication, normalization rules (Fagin 1979) are followed
so that there is no duplicated storage of the same data.

JSON Data Management
in RDBMS

Zhen Hua Liu
Oracle, USA

21

JSON Data Management in RDBMS

The issue with ‘schema first, data later’ paradigm is that when database applications evolve to add
new attributes to an entity, the table for that entity must be altered to add new columns. This schema
evolution issue becomes burden for database application developers who have to constantly request
database administrators to evolve schema. Therefore, relational model is ideal for supporting highly
structured data whose schema is relatively static.

In pure RDBMS, each column of a table is of a particular simple scalar datatype, such as integer,
varchar, date, timestamp, etc. A complex type needs to be decomposed into multiple columns, each of
which maps to a simple scalar datatype. An address type, for example, must be physically decomposed
into three columns: street name, city name, zip code as the underlying storage columns. Furthermore,
each column cannot be of an array type. An array type needs to be decomposed into two storage tables
with reference relationship enforced by primary key and foreign key integrity constraint. Although object
relational DBMS (ORDBMS) (Stonebraker, 1986) relaxes the simple datatype requirement by allowing
complex datatype, including the array datatype, as a datatype of a column, the complex datatype defini-
tion, known as structured user defined type definition in SQL 99 (Melton, 2003), needs to be defined
first so that columns of that complex datatype can store complex data. Therefore, schema evolution in the
form of evolving structured user defined datatype definition with their implied physical storage structures
remains. Furthermore, in ORDBMS, it is still true that each row of a table must have same number of
columns and each column must be of same datatype whether it is complex type or not.

In contrast with the time when relational model and RDBMS were built, we are living in the big
data age when there are variety of data to manage so that it is not practical to expect application users
to design schema first before their application data are storable, indexable, queryable and manageable.
In particular, for data that has loose structures, typically referred as semi-structured data, an alternative
paradigm, known as ‘data first, schema later’, becomes more attractive. Two common semi-structured data
models are XML and JSON. Native XML and JSON database systems are built based on the philosophy
of ‘data first, schema later’ paradigm. MarkLogic and MongoDB are representatives of pure XML and
JSON databases respectively. In particular, due to popularity of JavaScript, JSON, which represents the
persistent data of JavaScript programming language, is a very simple semi-structured data and thus has
gained its popularity during the last decade. JSON is a simple way to model an entity with flexible at-
tributes. Each attribute can be of scalar type, object type, array type.

Compared with RDBMS, Native JSON database systems are based on document-object model in-
stead of relational model. Native JSON DBMS supports concept of collection which is analogous to the
concept of table in RDBMS. Each JSON document stored in a collection is analogous to a row stored in
a table in RDBMS. Each JSON document is of document-object model. There can be variable number
of attributes of various datatypes, including complex types, array types within each JSON document.
Therefore, each JSON collection has flexible schema with variety of attributes that can be stored in each
JSON document. Such schema flexibility in JSON database, in comparing with rigid schema requirement
in RDBMS, really enables agile development style for application users who want a developer friendly
instead of DBA friendly database system to manage their data. This trend has pushed RDBMS to embrace
JSON capabilities as a schema-less development paradigm for application developers (Liu et al., 2014).

In summary, Table 1 shows the comparison between classical RDBMS and JSON native DBMS.
Table 2 shows an example of a JSON collection storing a set of JSON documents describing purchase

orders.

23 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/json-data-management-in-rdbms/230682

Related Content

Modeling Temporal Information With JSON
Zhangbing Huand Li Yan (2019). Emerging Technologies and Applications in Data Processing and

Management (pp. 134-153).

www.irma-international.org/chapter/modeling-temporal-information-with-json/230687

Distributed Business Rules within Service-Centric Systems
Florian Rosenberg, Anton Michlmayr, Christoph Nagland Schahram Dustdar (2009). Handbook of

Research on Emerging Rule-Based Languages and Technologies: Open Solutions and Approaches (pp.

448-470).

www.irma-international.org/chapter/distributed-business-rules-within-service/35870

A Fuzzy RDF Graph-Matching Method Based on Neighborhood Similarity
Guanfeng Liand Zongmin Ma (2019). Emerging Technologies and Applications in Data Processing and

Management (pp. 184-198).

www.irma-international.org/chapter/a-fuzzy-rdf-graph-matching-method-based-on-neighborhood-similarity/230689

A Generic Framework for Defining Domain-Specific Models
Arnor Solberg, Jon Oldevikand Audun Jensvoll (2003). UML and the Unified Process (pp. 23-38).

www.irma-international.org/chapter/generic-framework-defining-domain-specific/30535

Managing Research Data at the University of Porto: Requirements, Technologies, and Services
João Rocha da Silva, Cristina Ribeiroand João Correia Lopes (2013). Innovations in XML Applications and

Metadata Management: Advancing Technologies (pp. 174-197).

www.irma-international.org/chapter/managing-research-data-university-porto/73179

http://www.igi-global.com/chapter/json-data-management-in-rdbms/230682
http://www.irma-international.org/chapter/modeling-temporal-information-with-json/230687
http://www.irma-international.org/chapter/distributed-business-rules-within-service/35870
http://www.irma-international.org/chapter/a-fuzzy-rdf-graph-matching-method-based-on-neighborhood-similarity/230689
http://www.irma-international.org/chapter/generic-framework-defining-domain-specific/30535
http://www.irma-international.org/chapter/managing-research-data-university-porto/73179

