

IDEA GROUP PUBLISHING

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033-1240, USA Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

> This paper appears in the publication, *Integration of ICT in Smart Organizations* edited by Istvan Mezgar © 2006, Idea Group Inc.

> > **Chapter II**

Applications of Agent-Based Technologies in Smart Organizations

László Zsolt Varga, Hungarian Academy of Sciences, Hungary

Abstract

This chapter introduces agent technology as a means of creating dynamic software systems for the changing needs of smart organizations. The notion of agency is introduced, and individual and collective agent architectures are described. Agent interaction methods and agent system design techniques are discussed. Application areas of agent technology are overviewed. The chapter argues that the autonomous and proactive nature of agent systems make them suitable as the new information infrastructure for the networked components of dynamically changing smart organizations. Nowadays the whole world is networked into the Internet and if an organization is not connected to the Internet, then it has serious competitive drawbacks. Private persons are using the Internet more and more as well, so organizations keep contact with their clients through e-mail and give them information on their products and services on information portals. Customers can do the shopping in electronic shops and get all the information they want from the portal server; they can even configure the product they want to order. In order to satisfy individual needs, smart organizations must feed online information from the Internet into their internal information system and then further to their internal production control, accounting, design, resource planning, and several other components. The organization can adapt to these requirements only if it requires the same type of information management from its suppliers, so the interorganizational communication must become part of this networked environment as well.

In this environment, we can less and less talk about individual software products, because software components are interconnected and sooner or later almost every software component must be capable to interoperate with other software systems. This way, the information system of smart organizations becomes part of the worldwide Internet, so individual solutions cannot be applied. The software technology of smart organizations means less and less the design and implementation of individual software systems; rather, we can talk about the development of the design and implementation of a single distributed worldwide information system. In this context, the designers of subsystems cannot apply individual solutions, they have to adapt to global practice and standards. At the time of the design of such a global information system, the designer does not have enough information and resources to make a complete solution, so the designed system must integrate into the worldwide system with the ability to adapt to unforeseen changes and requirements using incomplete information at run-time.

Satisfying these requirements is among the goals of several technologies, including the Web services technology characterized by SOAP¹, WSDL², UDDI³ abbreviations (Web Services, 2004; UDDI, 2004), the semantic Web technology (Berners-Lee, Hendler, & Lassila, 2001), the grid (Foster & Kesselman, 1999) and maybe the most complete approach, which is agent-based computing (Wooldridge, 2002).

27 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/applications-agent-based-technologies-

smart/24061

Related Content

Opportunities and Challenges of Implementing Predictive Analytics for Competitive Advantage

Mohsen Attaranand Sharmin Attaran (2018). International Journal of Business Intelligence Research (pp. 1-26).

www.irma-international.org/article/opportunities-and-challenges-of-implementing-predictiveanalytics-for-competitive-advantage/209701

Analysis of the Relationship Between Sustainability and Software Performance

Koray Cirakand Hur Bersam Sidal Bolat (2022). *International Journal of Business Analytics (pp. 1-13).*

www.irma-international.org/article/analysis-of-the-relationship-between-sustainability-and-software-performance/298019

Networking Technologies for Business Continuity

Nijaz Bajgoric (2009). Continuous Computing Technologies for Enhancing Business Continuity (pp. 254-275).

www.irma-international.org/chapter/networking-technologies-business-continuity/7141

Talent Analytics for Workforce Forecasting, Fostering Employee Engagement, and Turnover Prediction

K. Sanjayand Shweta Kaur Khalsa (2025). *Harnessing Business Intelligence for Modern Talent Management (pp. 403-436).*

www.irma-international.org/chapter/talent-analytics-for-workforce-forecasting-fosteringemployee-engagement-and-turnover-prediction/383206

Measuring Agreement Among Ranks: Sustainability Application

Kathleen Campbell Garwoodand Alicia Graziosi Strandberg (2016). *International Journal of Business Intelligence Research (pp. 45-62).*

www.irma-international.org/article/measuring-agreement-among-ranks/161673