293

Chapter 1.14
Genetic Programming

Pierre Collet
Université du Littoral Céte d’Opale, France

INTRODUCTION

Genetic programming (GP) is still rather un-
known, even though it has recently obtained
spectacularresults: John Koza showed in his latest
book (Kozaetal.,2003) that genetic programming
can routinely produce solutions that are competi-
tive with human intelligence, without requiring
one to be an expert in the domain of the problem
to be solved.

A Bit of History

The idea of evolving computer programs dates
back to the dawn of computing. Back in 1958,
Friedberg made several attempts to have a com-
puter program itself (Friedberg, 1958; Friedberg,
Dunham, & North, 1958) using what would now be
called mutations. He started with a “population”
of random programs, and modified the contents
stochastically, trying to improve the results.
Later on, Smith (1980), who was working
on learning classifier systems, introduced small

programs in the rules he was evolving. However,
the modern vision of genetic programming starts
with a small but seminal paper by Cramer (1985),
who uses a tree-like variable size structure to
represent a program. Programs are not written in
LISP (as suggested by Koza later on) but in TB
(a tree version of the JB language). Along with
mutation, Cramer also uses a standard subtree
crossover, introduces as well a mono-parental
crossover, and insists on the necessity to create
closed genetic operators. Above all, he evolves
his population of programs with an evolutionary
engine.

All the seeds were therefore present for the
domain to grow, but as for Manderick and Moy-
son and Ant Colony Optimization (cf. Chapter
III), Cramer somehow failed to promote his
work enough, and nothing major happened in
this domain for several years. In fact, another
major problem was that computers of this era
were not powerful enough to obtain really good
results with GP.

Copyright © 2008, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.



Genetic Programming a la Koza

By the beginning of the 1990s, genetic program-
ming made its comeback thanks to Koza (1989,
1992, 1994; Koza et al., 1999, 2003) who put in
a lot of energy (and computer power) to develop
the ideas introduced by Cramer and his prede-
CEssors.

Genetic programming is nothing else than
standard evolutionary techniques (described in
Chapter 1V) applied to individuals that imple-
ment programs. Standard evolutionary algo-
rithms evolve potential solutions to a problem to
be optimized. Most of the time, EA individuals
are made of a list of parameters that are passed
over to a “fitness function” used to evaluate the
individual.

In genetic programming, an individual is a
program, or more often a function. The main (and
only?) difference with EAs is that GP executes
the individuals to evaluate them. Another differ-
ence is that in most of the cases, GP uses variable
length individuals where standard EAs use fixed
size individuals.

This chapter presents standard genetic pro-
gramming a la Koza, including hints, suggestions,
and pointers to state-of-the-art papers that will
hopefully allow newcomers to obtain good results
with this delicate technique.

STANDARD GENETIC
PROGRAMMING

Representation of an Individual

As is the case in EAs, using the good represen-
tation for a particular problem is quite essential,
because the chosen representation more or less
determines the search space in which the individu-
als will evolve: it will be very difficult to obtain
an iterative program with a representation that
does not allow loops or recursive calls. On the
contrary, ifeverythingis allowed, the search space

294

Genetic Programming

may be so large that finding compiling programs
that stop correctly or simply do not hang will be
already very difficult.

Theindividual representation described below
corresponds to the most common one¥that is, the
representation that Koza used for the development
of what is now standard genetic programming.
In order to reduce the search space and find an
individual structure adapted to the representation
of a program, Koza naturally chose a functional
language for several reasons:

* Syntactically speaking, with a purely func-
tional representation, there is no need to de-
finea grammarrecognizing valid programs,
provided the set of functions is closed.

* Functional languages limit side effects,
which, as a side effect, minimizes bug oc-
currence.

* Above all, a functional program can very
easily be implemented as a tree: nodes are
operators that have as many children that
they need operands and that return to their
parent the result of their evaluation.

For instance, a function calculating a factorial:

Function fact(n) {
If n=0 return 1
Else return fact(n-1)

can be simply represented by the tree in Figure
1.

Moreover, of all different possible representa-
tions, a tree structure can naturally implement
variable size individuals on which crossover
operators can be very easily applied: one only
needs to swap two subtrees (cf. section below on
genetic operators).

Of all available functional languages, LISP is
certainly the most usable. It was quite popular at
the end of the 1980s, and some computers were
developed around its specificities. LISP was there-



13 more pages are available in the full version of this document, which may be
purchased using the "Add to Cart" button on the publisher's webpage: www.igi-
global.com/chapter/genetic-programming/24284

Related Content

Speckle Noise Reduction in SAR Images Using Fuzzy Inference System
S Vijayakumarand V. Santhi (2019). International Journal of Fuzzy System Applications (pp. 60-83).
www.irma-international.org/article/speckle-noise-reduction-in-sar-images-using-fuzzy-inference-system/239877

Multi-Processor Job Scheduling in High-Performance Computing (HPC) Systems

Annu Priyaand Sudip Kumar Sahana (2020). FPGA Algorithms and Applications for the Internet of Things (pp.
168-203).
www.irma-international.org/chapter/multi-processor-job-scheduling-in-high-performance-computing-hpc-systems/25756 1

Soft Computing Approaches for Human-Autonomous Agent Communication

Frederick E. Petryand Ronald R. Yager (2012). International Journal of Intelligent Information Technologies
(pp. 1-12).

www.irma-international.org/article/soft-computing-approaches-human-autonomous/74826

Algorithm for Decision Procedure in Temporal Logic Treating Uncertainty, Plausibility, Knowledge
and Interacting Agents

V. Rybakov (2012). Insights into Advancements in Intelligent Information Technologies: Discoveries (pp. 32-
46).

www.irma-international.org/chapter/algorithm-decision-procedure-temporal-logic/64369

Knowledge Representation Using Fuzzy XML Rules in Web-Based Expert System for Medical
Diagnosis

Priti Srinivas Sajja (2015). Fuzzy Expert Systems for Disease Diagnosis (pp. 138-167).
www.irma-international.org/chapter/knowledge-representation-using-fuzzy-xml-rules-in-web-based-expert-system-for-
medical-diagnosis/124446



http://www.igi-global.com/chapter/genetic-programming/24284
http://www.igi-global.com/chapter/genetic-programming/24284
http://www.irma-international.org/article/speckle-noise-reduction-in-sar-images-using-fuzzy-inference-system/239877
http://www.irma-international.org/chapter/multi-processor-job-scheduling-in-high-performance-computing-hpc-systems/257561
http://www.irma-international.org/article/soft-computing-approaches-human-autonomous/74826
http://www.irma-international.org/chapter/algorithm-decision-procedure-temporal-logic/64369
http://www.irma-international.org/chapter/knowledge-representation-using-fuzzy-xml-rules-in-web-based-expert-system-for-medical-diagnosis/124446
http://www.irma-international.org/chapter/knowledge-representation-using-fuzzy-xml-rules-in-web-based-expert-system-for-medical-diagnosis/124446

