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AbstrAct

The chapter commences with an overview of au-
tomatic speech recognition (ASR), which covers 
not only the de facto standard approach of hidden 
Markov models (HMMs), but also the tried-and-
proven techniques of dynamic time warping and 
artificial neural networks (ANNs). The coverage 
then switches to Gluck’s (2004) draw-talk-write 
(DTW) process, developed over the past two 
decades to assist non-text literate people become 
gradually literate over time through telling and/
or drawing their own stories. DTW has proved 
especially effective with “illiterate” people from 
strong oral, storytelling traditions. The chapter 
concludes by relating attempts to date in automat-
ing the DTW process using ANN-based pattern 
recognition techniques on an Apple Macintosh 
G4™ platform.

INtrODUctION: 
speech prODUctION

Generally speaking, the aims of automatic speech 
recognition (ASR)  are twofold: firstly, to extract 
the salient features of the incoming speech signals, 
then secondly to map these into the most likely 
word sequences, with the assistance of embedded 
acoustic and language models (Huang, Acero, & 
Hon, 2001). 

Natural, conversational, continuous speech 
often incorporates false starts, repeated phrases, 
non-grammatical phrases (ums and ahs), and 
pauses, which bear little relation to written (text) 
punctuation. Some characteristics of speech 
which make recognition, whether by humans 
or machine, difficult include: background noise 
levels, variations in speaker loudness, pitch, em-
phasis (stress), and speech rate, not only between 
different speakers (either from within the same 
culture or due to different dialects), but also on 
different occasions with the same speaker (for 
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example, with or without a head cold). Even worse, 
we tend to make assumptions as to what words 
(phonemes) we expect to hear next, based not only 
on the context of surrounding words (phonemes), 
but also on cultural mores. Further, since there 
is not always a strong correlation between the 
acoustic properties of speech waveforms and the 
linguistic units that they represent, this can lead 
to ambiguous interpretation. Ambiguities can also 
arise due to the fact that similar-sounding words 
can have quite different meanings (homonyms); 
conversely, different-sounding words can have 
similar meanings (synonyms). 

A person’s fundamental frequency (number 
of vibrations per second) is a function of their 
vocal cord mass, and typically ranges between 
50 and 250Hz for males, and roughly twice this 
frequency for females.

We generate speech (phones) using a combina-
tion of voice box, or larynx (the vibration source), 
lungs (energy or power source), vocal tract and 
nasal passage (resonant cavities), together with 
the articulatory organs (lips, teeth, tongue, jaws, 
cheeks, and alveolar ridge — that region in the 
roof of the mouth which makes contact with 
the tip of the tongue) (Masaki, 2000). The lips, 
teeth, tongue, jaw, and cheeks are all capable of 
changing the shape of the basic resonant cavity, 
thereby producing different sounds. For example, 
the lips are involved in the production of English 
vowels and the consonants /b/ and /p/; the teeth 
(and lips) in /f/ and /v/; the alveolar ridge in /d/, 
/n/ and /t/, and the cheeks in /b/ and /p/. Likewise, 
various constrictions in our air passageways 
produce different sounds (for example, /p/, /b/ 
and /f/). Furthermore, sounds can be produced 
either with the vocal cords vibrating, referred to 
as “phonation” or voiced (for instance, /g/, /m/, 
/z/), or without, in other words “voiceless” (such 
as /f, /k/, /p/, /s/, /t/) (Keller, 1994).

Thus from a signal processing point of view, we 
can regard speech as a time-varying sound wave, 
whose frequency components are determined by 
changes in the size and shape of the vocal tract 

and associated physiology. Peaks in the energy 
spectrum of the speech waveform are referred to 
as acoustic resonant frequencies or “formants”. 
Most vowels comprise more than three formants; 
however, the first three (F1 ~500Hz, F2 ~1800Hz, 
F3 ~2500Hz), usually suffice for purposes of clas-
sification and/or recognition (higher-frequency 
formants reflect voice quality and individual 
speaker characteristics) (Ainsworth, 1997). Thus 
we can conceive of speech as the superposition 
of a number of frequency components of varying 
amplitudes and phases. As such, and in common 
with signal processing generally, speech is ame-
nable to either Fourier series analysis (for continu-
ous — analog — signals), or once digitized, to 
Fourier transforms (for discrete signals). Speech 
recognition is invariably implemented on some 
form of computer platform; thus the raw speech 
signal must first be converted from analog to 
digital form.

Acoustic signals, including speech, are char-
acterized by features such as pitch, duration, 
amplitude (loudness, signal strength, power/en-
ergy), and phase of each frequency component. 
As it happens, only the first three are relevant 
from a speech recognition perspective, since 
the human ear is insensitive to phase (Katigiri, 
2000). Now since phonemes, the basic linguistic 
unit, are characterized by frequency, time, and 
energy, it makes more sense to use three-dimen-
sional spectrograms rather than process the raw 
(albeit filtered) time-varying speech waveform. 
Filtering is necessary since speech, like any other 
one-dimensional time-varying acoustic signal, 
is susceptible to interference from background 
noise.

speech recOgNItION

Humans use not just auditory information in 
recognizing speech, but a host of non-verbal cues 
as well — more specifically, a speaker’s facial 
movements (mouth, eyebrows, and so on), body 
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